Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

Overview

SEDE

sede ci

SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description. It's based on a real usage of users from the Stack Exchange Data Explorer platform, which brings complexities and challenges never seen before in any other semantic parsing dataset like including complex nesting, dates manipulation, numeric and text manipulation, parameters, and most importantly: under-specification and hidden-assumptions.

Paper (NLP4Prog workshop at ACL2021): Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data.


sede sql

Setup Instructions

Create a new Python 3.7 virtual environment:

python3.7 -m venv .venv

Activate the virtual environment:

source .venv/bin/activate

Install dependencies:

pip install -r requirements.txt

Add the project directory to python PATH:

export PYTHONPATH=/your/projects-directories/sede:$PYTHONPATH

One can run all commands by just running make command, or running them step by step by the following commands:

Run pylint:

make lint

Run black:

make black_check

Run tests (required JSQL running for this - please see "Running JSQLParser" chapter):

make unit_test

Add the virtual environment to Jupyter Notebook:

python3.7 -m ipykernel install --user --name=.venv

Now you can enter into Jupyter with the command jupyter notebook and when creating a new notebook you will need to choose the .venv environment.

Folders Navigation

  • src - source code
  • configs - contains configuration files for running experiments
  • data/sede - train/val/test sets of SEDE. Note - files with the _original suffix are the ones that we kept original as coming from SEDE without our fixes. See our paper for more details.
  • notebooks - some helper Jupyter notebooks.
  • stackexchange_schema - holds file that respresents the SEDE schema.

Running JSQLParser

Clone JSQLParser-as-a-Service project: git clone https://github.com/hirupert/jsqlparser-as-a-service.git

Enter the folder with cd jsqlparser-as-a-service

Build the JSQLParser-as-a-Service image using the following command: docker build -t jsqlparser-as-a-service .

Running the image inside a docker container in port 8079: docker run -d -p 8079:8079 jsqlparser-as-a-service

Test that the docker is running by running the following command:

curl --location --request POST 'http://localhost:8079/sqltojson' \
--header 'Content-Type: application/json' \
--data-raw '{
    "sql":"select salary from employees where salary < (select max(salary) from employees)"
}'

Training T5 model

Training SEDE:

python main_allennlp.py train configs/t5_text2sql_sede.jsonnet -s experiments/name_of_experiment --include-package src

Training Spider:

In order to run our model + Partial Components Match F1 metric on Spider dataset, one must download Spider dataset from here: https://yale-lily.github.io/spider and save it under data/spider folder inside the root project directory. After that, one can run the following command in order to train our model on Spider dataset:

python main_allennlp.py train configs/t5_text2sql_spider.jsonnet -s experiments/name_of_experiment --include-package src

Evaluation (SEDE)

Run evaluation on SEDE validation set with:

python main_allennlp.py evaluate experiments/name_of_experiment data/sede/val.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --cuda-device 0 --batch-size 10 --include-package src

Run evaluation on SEDE test set with:

python main_allennlp.py evaluate experiments/name_of_experiment data/sede/test.jsonl --output-file experiments/name_of_experiment/test_predictions.sql --cuda-device 0 --batch-size 10 --include-package src

Note - In order to evaluate a trained model on Spider, one needs to replace the experiment name and the data path to: data/spider/dev.json.

Inference (SEDE)

Predict SQL queries on SEDE validation set with:

python main_allennlp.py predict experiments/name_of_experiment data/sede/val.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --use-dataset-reader --predictor seq2seq2 --cuda-device 0 --batch-size 10 --include-package src

Predict SQL queries on SEDE test set with:

python main_allennlp.py predict experiments/name_of_experiment data/sede/test.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --use-dataset-reader --predictor seq2seq2 --cuda-device 0 --batch-size 10 --include-package src

Note - In order to run inference with a trained model on Spider (validation set), one needs to replace the experiment name and the data path to: data/spider/dev.json.

Acknowledgements

We thank Kevin Montrose and the rest of the Stack Exchange team for providing the raw query log.

Owner
Rupert.
Rupert.
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022