Deeplearning project at The Technological University of Denmark (DTU) about Neural ODEs for finding dynamics in ordinary differential equations and real world time series data

Overview

Authors

Marcus Lenler Garsdal, [email protected]

Valdemar Søgaard, [email protected]

Simon Moe Sørensen, [email protected]

Introduction

This repo contains the code used for the paper Time series data estimation using Neural ODE in Variational Auto Encoders.

Using pytorch and Neural ODEs (NODEs) it attempts to learn the true dynamics of time series data using toy examples such as clockwise and counterclockwise spirals, and three different examples of sine waves: first a standard non-dampened sine wave, second a dampened sine wave, third an exponentially decaying and dampened sine wave. Finally, the NODE is trained on real world time series data of solar power curves.

The performance of the NODEs are compared to an LSTM VAE baseline on RMSE error and time per epoch.

This project is a purely research and curiosity based project.

Code structure

To make development and research more seamless, an object-oriented approach was taken to improve efficiency and consistency across multiple runs. This also makes it easier to extend and change workflows across multiple models at once.

Source files

The src folder contains the source code. The main components of the source code are:

  • data.py: Data loading object. Primarily uses data generation functions.
  • model.py: Contains model implementations and the abstract TrainerModel class which defines models in the trainer.py file.
  • train.py: A generalized Trainer class used to train subclasses of the TrainerModel class. Moreover, it saves and loads different types of models and handles model visualizations.
  • utils.py: Standard utility functions
  • visualize.py: Visualizes model properties such as reconstructions, loss curves and original data samples

Experiments

In addition, there are three folders for each type of dataset:

  • real/: Contains data for solar power curves and main script for training the solar power model
  • spring/: Generates spring examples and trains spring models
  • toy/: Generates spiral examples and trains spiral models

Each main.py script takes a number of relevant parameters as input to enable parameter tuning, experimentation of different model types, dataset sizes and types. These can be read from the respective files.

Running the code

To run the code use the following code in a terminal with the project root as working directory: python -m src.[dataset].main [--args]

For example: python3 -m src.toy.main --epochs 1000 --freq 100 --num-data 500 --n-total 300 --n-sample 200 --n-skip 1 --latent-dim 4 --hidden-dim 30 --lstm-hidden-dim 45 --lstm-layers 2 --lr 0.001 --solver rk4

Setup environment

Create a new python environment and install the packages from requirements.txt using

pip install -r requirements.txt

Run python notebook

Install Jupyter with pip install jupyter and run a server using jupyter notebook or any supported software such as Anaconda.

Then open run_experiments.ipynb and run the first cell. If the cell succeeds, you should see outputs in experiment/output/png/**

Owner
Simon Moe Sørensen
Studying MSc Business Analytics - Predictive Modelling at DTU
Simon Moe Sørensen
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023