Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

Overview

On-the-Fly Adaptation

Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation

Paper

Introduction

One major problem in deep learning-based solutions for medical imaging is the drop in performance when a model is tested on a data distribution different from the one that it is trained on. Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem. Previous methods solve this by adapting the model to target distribution by using techniques like entropy minimization or regularization. In these methods, the models are still updated by back-propagation using an unsupervised loss on complete test data distribution. In real-world clinical settings, it makes more sense to adapt a model to a new test image on-the-fly and avoid model update during inference due to privacy concerns and lack of computing resource at deployment. To this end, we propose a new setting - On-the-Fly Adaptation which is zero-shot and episodic (\emph{i.e.}, the model is adapted to a single image at a time and also does not perform any back-propagation during test-time). To achieve this, we propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer to adapt the features with respect to a domain code. The domain code is generated using a pre-trained encoder trained on a large corpus of medical images. During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data. We validate the performance on both 2D and 3D data distribution shifts where we get a better performance compared to previous test-time adaptation methods.

Using the code:

The code is stable while using Python 3.6.13, CUDA >=10.1

  • Clone this repository:
git clone https://github.com/jeya-maria-jose/On-The-Fly-Adaptation
cd On-The-Fly-Adaptation

To install all the dependencies using conda:

conda env create -f environment.yml
conda activate otf

Datasets

  1. CHASE - Link
  2. HRF - Link
  3. RITE - Link
  4. BraTS 2019 - Link

Data Format

Make sure the datasets are arranged in the following structure:

inputs
└── <dataset name>
    ├── images
    |   ├── 001.png
    │   ├── 002.png
    │   ├── 003.png
    │   ├── ...
    |
    └── masks
        ├── 0
        |   ├── 001.png
        |   ├── 002.png
        |   ├── 003.png
        |   ├── ...
 

Validation

Download the pretrained model weights from Link

DPG weights: Link

  1. Evaluate UNet with no adaptation
python val_unet.py --name <source model name> --target <target dataset> 

For example, if you want to evaluate the model for CHASE to RITE domain shift, the code will be

python val_unet.py --name chase_unet --target rite 
  1. Evaluate Adaptive UNet
python val_adaptiveunet.py --name <source model name> --target <target dataset> --dpg <folder directory of dpg weights>

For example, if you want to evaluate the model for CHASE to RITE domain shift, the code will be

python val_adaptiveunet.py --name chase_adaptiveunet --target rite --dpg "./pretrain_fundus/"

Training Adaptive-UNet

Coming soon!

Volumetric Segmentation Experiments:

Coming Soon!

Acknowledgements:

This code-base uses certain code-blocks and helper functions from UNet++ and TENT.

Citation:

Owner
Jeya Maria Jose
PhD Student at Johns Hopkins University.
Jeya Maria Jose
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022