Xview3 solution - XView3 challenge, 2nd place solution

Overview

Xview3, 2nd place solution

https://iuu.xview.us/

test split aggregate score
public 0.593
holdout 0.604

Inference

To reproduce the submission results, first you need to install the required packages. The easiest way is to use docker to build an image or pull a prebuilt docker image.

Prebuilt docker image

One can pull the image from docker hub and use it for inference docker pull selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34

Inference specification is the same as for XView reference solution

docker run --shm-size 16G --gpus=1 --mount type=bind,source=/home/xv3data,target=/on-docker/xv3data selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34 /on-docker/xv3data/ 0157baf3866b2cf9v /on-docker/xv3data/prediction/prediction.csv

Build from scratch

docker build -t xview3 .

Training

For training I used an instance with 4xRTX A6000. For GPUs with smaller VRAM you will need to reduce crop sizes in configurations. As I did not make small tiles of large tiff and used memmap instead, fast disks like M.2 (ideally in raid0) should be used.

To reproduce training from scratch:

  1. build docker image as described above
  2. run docker image with modified entrypoint, e.g. docker run --rm --network=host --entrypoint /bin/bash --gpus all --ipc host -v /mnt:/mnt -it xview3:latest
  3. run ./train_all.sh NUM_GPUS DATA_DIR SHORE_DIR VAL_OUT_DIR, where DATA_DIR is the root directory with the dataset, SHORE_DIR path to shoreline data for validation set, VAL_OUT_DIR any path where csv prediction will be stored on evaluation phase after each epoch
  4. example ./train_all.sh 4 /mnt/md0/datasets/xview3/ /mnt/md0/datasets/xview3/shoreline/validation /mnt/md0/datasets/xview3/oof/
  5. it will overwrite existing weights under weights directory in container

Training time

As I used full resolution segmentation it was quite slow, 9-15 hours per model on 4 gpus.

Solution approach overview

Maritime object detection can be transformed to a binary segmentation and regressing problem using UNet like convolutional neural networks with the multiple outputs.

Targets

Model architecture and outputs

Generally I used UNet like encoder-decoder model with the following backbones:

  • EfficientNet V2 L - best performing
  • EfficientNet V2 M
  • EfficientNet B7
  • NFNet L0 (variant implemented by Ross Wightman). Works great with small batches due to absence of BatchNorm layers.
  • Resnet34

For the decoder I used standard UNet decoder with nearest upsampling without batch norm. SiLU was used as activation for convolutional layers. I used full resolution prediction for the masks.

Detection

Centers of objects are predicted as gaussians with sigma=2 pixels. Values are scaled between 0-255. Quality of dense gaussians is the most important part to obtain high aggregate score. During the competition I played with different loss functions with varied success:

  • Pure MSE loss - had high precision but low recall which was not good enough for the F1 score
  • MAE loss did not produce acceptable results
  • Thresholded MSE with sum reduction showed best results. Low value predictions did not play any role for the model's quality, so they are ignored. Though loss weight needed to be tuned properly.

Vessel classification

Vessel masks were prepared as binary round objects with fixed radius (4 pixels) Missing vessel value was transformed to 255 mask that was ignored in the loss function. As a loss function I used combination of BCE, Focal and SoftDice losses.

Fishing classification

Fishing masks were prepared the same way as vessel masks

Length estimation

Length mask - round objects with fixed radius and pixel values were set to length of the object. Missing length was ignored in the loss function. As a loss function for length at first I used MSE but then change to the loss function that directly reflected the metric. I.e.length_loss = abs(target - predicted_value)/target

Training procedure

Data

I tried to use train data split but annotation quality is not good enough and even pretraining on full train set and the finetuning on validation data was not better than simply using only validation data. In the end I used pure validation data with small holdout sets for evaluation. In general there was a data leak between val/train/test splits and I tried to use clean non overlapping validation which did not help and did not represent public scores well.
Data Leak

Optimization

Usually AdamW converges faster and provides better metrics for binary segmentation problems but it is prone to unstable training in mixed precision mode (NaNs/Infs in loss values). That's why as an optimizer I used SGD with the following parameters:

  • initial learning rate 0.003
  • cosine LR decay
  • weight decay 1e-4
  • nesterov momentum
  • momentum=0.9

For each model there were around 20-30k iterations. As I used SyncBN and 4 GPUs batch size=2 was good enough and I used larger crops instead of large batch size.

Inference

I used overlap inference with slices of size 3584x3584 and overlap 704 pixels. To reduce memory footprint predictions were transformed to uint8 and float16 data type before prostprocessing. See inference/run_inference.py for details.

Postprocessing

After center, vessel, fishing, length pixel masks are predicted they need to be transformed to detections in CSV format. From center gaussians I just used tresholding and found connected components. Each component is considered as a detected object. I used centroids of objects to obtain mean values for vessel/fishing/lengths from the respective masks.

Data augmentations

I only used random crops and random rotate 180. Ideally SAR orientation should be provided with the data (as in Spacenet 6 challenge) because SAR artifacts depend on Satellite direction.

Data acquisition, processing, and manipulation

Input

  • 2 SAR channels (VV, VH)
  • custom normalization (Intensity + 40)/15
  • missing pixel values changed to -100 before normalization

Spatial resolution of the supplementary data is very low and doesn't bring any value to the models.

During training and inference I used tifffile.memmap and cropped data from memory mapped file in order to avoid tile splitting.

You might also like...
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

 Meli Data Challenge 2021 - First Place Solution
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

The sixth place winning solution (6/220) in 2021 Gaofen Challenge.
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

Owner
Selim Seferbekov
Selim Seferbekov
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022