Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

Related tags

Deep LearningMG-GAN
Overview

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

This repository contains the code for the paper

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, Laura Leal-Taixé (* equal contribution)
International Conference on Computer Vision (ICCV), 2021

Motivation

The distribution over future trajectories of pedestrians is often multi-modal and does not have connected support (a).

We found that single generator GANs introduce out-of-distribution (OOD) samples in this case due to GANs mapping the continuous latent variable z with a continuous function (b). These OOD samples might introduce unforseen behavior in real world applications, such as autonomous driving.

To resolve this problem, we propose to learn the target distribution in a piecewise manner using multiple generators, effectively preventing OOD samples (c).

Model

Our model consists of four key components: Encoding modules, Attention modules, and our novel contribution PM-Network learning a distribution over multiple Generators.


Setup

First, setup Python environment

conda create -f environment.yml -n mggan
conda activate mggan

Then, download the datasets (data.zip) from here and unzip in the root of this repository

unzip data.zip

which will create a folder ./data/datasets.

Training

Models can be trained using the script mggan/model/train.py using the following command

python mggan/models/pinet_multi_generator/train.py --name <name_of_experiment> --num_gens <number_of_generators>  --dataset <dataset_name> --epochs 50

This generates a output folder in ./logs/<name_of_experiment> with Tensorboard logs and the model checkpoints. You can use tensorboard --logdir ./logs/<name_of_experiment> to monitor the training process.

Evaluation

For evaluation of metrics (ADE, FDE, Precison, Recall) for k=1 to k=20 predictions, use

python scripts/evaluate.py --model_path <path_to_model_directory>  --output_folder <folder_to_store_result_csv>

One can use --eval-set <dataset_name> to evaluate models on other test sets than the dataset the model was trained on. This is useful to evaluate the BIWI models on the Garden of Forking Paths dataset (gofp) for which we report results in the paper.

Pre-trained models

We provide pre-trained models for MG-GAN with 2-8 generators together with the training configurations, on the BIWI datasets and Stanford Drone dataset (SDD) here.

Citation

If our work is useful to you, please consider citing

@inproceedings{dendorfer2021iccv,
  title={MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction}, 
  author={Dendorfer, Patrick and Elflein, Sven and Leal-Taixé, Laura},
  month={October}
  year={2021},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  }
You might also like...
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Code for ICCV 2021 paper
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Code for the ICCV 2021 paper
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Code release for ICCV 2021 paper
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Comments
  • request to visualizer

    request to visualizer

    Hello author! I admire your work and would like to reproduce your results. There is a small requirement here that needs to trouble you. Do you have a visual code, which has shown the effect in your paper. Thanks again for your work and contributions!

    opened by 12num 0
  • Question regarding Garden of Forking Path Dataset

    Question regarding Garden of Forking Path Dataset

    Hello,

    I see there are more scenes in the test set (ETH, Hotel, and ZARA1) than the train set (ETH) in your pre-processed dataset of GOFP. Could you kindly elaborate on why it is that?

    Thanks, Sourav Das

    opened by SodaCoder 0
  • Question about ETH&UCY Dataset

    Question about ETH&UCY Dataset

    Hi, I notice that trajectories in some datasets are not consistent with provided in Social GAN. May I ask how do you preprocess your data? It will be helpful to conduct my experiments in a fair environment. Thanks!

    opened by HRHLALALA 1
  • Reproducible MG-GAN code for the FPD dataset

    Reproducible MG-GAN code for the FPD dataset

    Hello Patrick, Sven,

    This is Sourav Das, a 1st year Ph.D. student at the University of Padova, Italy.

    This Github repository has the reproducible implementation for the datasets: ETH, Hotel, Social_Stanford_Synthetic, Stanford, Univ, Zara1, Zara2, and GOFP.

    I would like to reproduce the results on FPD datasets also. Could you kindly share with me the code with support for the FPD dataset?

    Here is my Github: https://github.com/SodaCoder

    Thanks in advance,

    opened by SodaCoder 1
Releases(1.0)
Owner
Sven
Studying Computer Science at Technical University of Munich. Interested in Machine Learning Research.
Sven
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022