TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

Overview

FunMatch-Distillation

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

The techniques have been demonstrated using three datasets:

This repository provides Kaggle Kernel notebooks so that we can leverage the free TPu v3-8 to run the long training schedules. Please refer to this section.

Importance

The importance of knowledge distillation lies in its practical usefulness. With the recipes from "function matching", we can now perform knowledge distillation using a principled approach yielding student models that can actually match the performance of their teacher models. This essentially allows us to compress bigger models into (much) smaller ones thereby reducing storage costs and improving inference speed.

Key ingredients

  • No use of ground-truth labels during distillation.
  • Teacher and student should see same images during distillation as opposed to differently augmented views of same images.
  • Aggressive form of MixUp as the key augmentation recipe. MixUp is paired with "Inception-style" cropping (implemented in this script).
  • A LONG training schedule for distillation. At least 1000 epochs to get good results without overfitting. The importance of a long training schedule is paramount as studied in the paper.

Results

The table below summarizes the results of my experiments. In all cases, teacher is a BiT-ResNet101x3 model and student is a BiT-ResNet50x1. For fun, you can also try to distill into other model families. BiT stands for "Big Transfer" and it was proposed in this paper.

Dataset Teacher/Student Top-1 Acc on Test Location
Flowers102 Teacher 98.18% Link
Flowers102 Student (1000 epochs) 81.02% Link
Pet37 Teacher 90.92% Link
Pet37 Student (300 epochs) 81.3% Link
Pet37 Student (1000 epochs) 86% Link
Food101 Teacher 85.52% Link
Food101 Student (100 epochs) 76.06% Link

(Location denotes the trained model location.)

These results are consistent with Table 4 of the original paper.

It should be noted that none of the above student training regimes showed signs of overfitting. Further improvements can be done by training for longer. The authors also showed that Shampoo can get to similar performance much quicker than Adam during distillation. So, it may very well be possible to get this performance with fewer epochs with Shampoo.

A few differences from the original implementation:

  • The authors use BiT-ResNet152x2 as a teacher.
  • The mixup() variant I used will produce a pair of duplicate images if the number of images is even. Now, for 8 workers it will become 8 pairs. This may have led to the reduced performance. We can overcome this by using tf.roll(images, 1, axis=0) instead of tf.reverse in the mixup() function. Thanks to Lucas Beyer for pointing this out.

About the notebooks

All the notebooks are fully runnable on Kaggle Kernel. The only requirement is that you'd need a billing enabled GCP account to use GCS Buckets to store data.

Notebook Description Kaggle Kernel
train_bit.ipynb Shows how to train the teacher model. Link
train_bit_keras_tuner.ipynb Shows how to run hyperparameter tuning using
Keras Tuner for the teacher model.
Link
funmatch_distillation.ipynb Shows an implementation of the recipes
from "function matching".
Link

These are only demonstrated on the Pet37 dataset but will work out-of-the-box for the other datasets too.

TFRecords

For convenience, TFRecords of different datasets are provided:

Dataset TFRecords
Flowers102 Link
Pet37 Link
Food101 Link

Paper citation

@misc{beyer2021knowledge,
      title={Knowledge distillation: A good teacher is patient and consistent}, 
      author={Lucas Beyer and Xiaohua Zhai and Amélie Royer and Larisa Markeeva and Rohan Anil and Alexander Kolesnikov},
      year={2021},
      eprint={2106.05237},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Huge thanks to Lucas Beyer (first author of the paper) for providing suggestions on the initial version of the implementation.

Thanks to the ML-GDE program for providing GCP credits.

Thanks to TRC for providing Cloud TPU access.

You might also like...
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

Code implementation of Data Efficient Stagewise Knowledge Distillation paper.
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Official implementation of the paper
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Releases(v4.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022