Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

Overview

Visit QuantNet

Visit QuantNet JumpDetectR Visit QuantNet 2.0

Name of QuantLet : JumpDetectR

Published in : 'To be published as "Jump dynamics in high frequency crypto markets"'

Description : 'Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod / Li (2012) Jump tests for noisy high frequency data'

Keywords : Jumps, jump test, high frequency, time series, Ait-Sahalia, Jacod, Lee, Mykland, stochastic processes, cryptocurrencies, cryptocurrency, crypto, spectrogram, microstructure, market microstructure noise, contagion, shocks

See also : 'Lee, S.S. and Mykland, P.A. (2012) Jumps in Equilibrium Prices and Market Microstructure Noise; Ait-Sahalia, Y. and Jacod, J., Jia Li (2012) Testing for jumps in noisy high frequency data'

Authors : Danial Florian Saef, Odett Nagy

Submitted : May 7 2021 by Danial Saef

Picture1

Picture2

Picture3

Picture4

Picture5

Picture6

Picture7

Picture8

Picture9

Picture10

Picture11

Picture12

R Code

## install and load packages ##
libraries = c("data.table")
lapply(libraries, function(x) if (!(x %in% installed.packages())) {install.packages(x)} )
invisible(lapply(libraries, library, quietly = TRUE, character.only = TRUE))
## ##

#### settings ####
Sys.setenv(LANG = "en") # set environment language to English
Sys.setlocale("LC_TIME", "en_US.UTF-8") # set timestamp language to English
## ##

#### load functions #####
source("./functions/make_return_file.R", echo = F)
source("./functions/LM_JumpTest_2012.R", echo = F)
source("./functions/AJ_JumpTest_2012.R", echo = F)
source("./functions/lapply_jump_test.R", echo = F)
source("./functions/AJL_Jump_Test_2012_functions.R", echo = F)
source("./functions/AJL_Jump_Test_2012.R", echo = F)
source("./functions/jacod_preaveraging.R", echo = F)
source("./functions/AJ_09_variation.R", echo = F)
source("./functions/split_by_id.R", echo = F)
source("./functions/remove_bounceback.R", echo = F)
#### ##


### load aggregate dataset ###
DT_agg_sub <- fread("./data/raw/DT_agg_sub.csv")
## ##

#### evaluate by id ####
## split data.table ##
DT_split_noimpute <- split_by_id(DT_agg_sub, IMPUTATION = FALSE)
DT_split_impute <- split_by_id(DT_agg_sub, IMPUTATION = TRUE)
DT_agg_split_noimpute <- rbindlist(DT_split_noimpute)
DT_agg_split_impute <- rbindlist(DT_split_impute)

## get LM result ##
DT_LM_result_id <- jump_test(DT_split_noimpute, which_test = "LM_JumpTest")

## get AJL result ##
DT_AJL_result_id <- jump_test(DT_split_impute, which_test = "AJL_JumpTest")

fwrite(DT_LM_result_id, file = "./data/JumpTestResult/DT_LM_result_id.csv")
fwrite(DT_AJL_result_id, file = "./data/JumpTestResult/DT_AJL_result_id.csv")
## ##

automatically created on 2021-05-17

Owner
LvB
QuantNet Tokens for science
LvB
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022