Implicit Model Specialization through DAG-based Decentralized Federated Learning

Overview

Federated Learning DAG Experiments

This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Implicit Model Specialization through DAG-based Decentralized Federated Learning"

General Usage

Since we are still using TensorFlow 1, Python <=3.7 is required.

Depending on your setup, you can obtain the old python version using a version manager such as pyenv or using a Docker container:

cd federated-learning-dag
docker run -d --name federated-learning-dag \
  -v $PWD:/workspace \
  --workdir /workspace \
  --init --shm-size 8g \
  mcr.microsoft.com/vscode/devcontainers/python:3.7-bullseye \
    tail -f /dev/null
docker exec -it federated-learning-dag bash
# Run pipenv commands in this shell

# Clean up
docker rm -f federated-learning-dag 

Then, use pipenv to set up your environment. VS Code users can use the provided devcontainer template as a base environment. Run pipenv install to download the dependencies and run the code within a pipenv shell.

There are two execution variants: A default, single-threaded one, and an extended version using the 'ray' parallelism library.

Basic usage: python -m tangle.lab --help (or python -m tangle.ray --help).

By default, all experiments_figure_[*].py use ray for parallelism. This requires lots of main memory and a shared memory option for use within Docker. VS Code devcontainer users have to add "--shm-size", "8gb" (depending on the available memory) to the runArgs in .devcontainer/devcontainer.json.

To view a DAG (sometimes called a tangle) in a web browser, run python -m http.server in the repository root and open http://localhost:8000/viewer/. Enter the name of your experiment run and adjust the round slider to see something.

Obtaining the datasets

The contents of the ./data directory can be obtained from https://data.osmhpi.de/ipfs/QmQMe1Bd8X7tqQHWqcuS17AQZUqcfRQmNRgrenJD2o8xsS/.

Reproduction of the evaluation in the paper

The experiements in the paper can be reproduced by running python scripts in the root folder of this repository. They are organized by the figures in which the respective evaluation is presented and named experiments_figure_[*].py

The results of the federated averaging runs presented in Figure 9 as baseline can be reproduced by running run_fed_avg_[fmnist,poets,cifar].py The results presented in Table 2 are generated by the scripts for DAG-IS of Figure 9 as well.

Owner
Operating Systems and Middleware Group
Operating Systems and Middleware Group
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022