Code for "Searching for Efficient Multi-Stage Vision Transformers"

Overview

Searching for Efficient Multi-Stage Vision Transformers

This repository contains the official Pytorch implementation of "Searching for Efficient Multi-Stage Vision Transformers" and is based on DeiT and timm.

photo not available

Illustration of the proposed multi-stage ViT-Res network.


photo not available

Illustration of weight-sharing neural architecture search with multi-architectural sampling.


photo not available

Accuracy-MACs trade-offs of the proposed ViT-ResNAS. Our networks achieves comparable results to previous work.

Content

  1. Requirements
  2. Data Preparation
  3. Pre-Trained Models
  4. Training ViT-Res
  5. Performing Neural Architecture Search
  6. Evaluation

Requirements

The codebase is tested with 8 V100 (16GB) GPUs.

To install requirements:

    pip install -r requirements.txt

Docker files are provided to set up the environment. Please run:

    cd docker

    sh 1_env_setup.sh
    
    sh 2_build_docker_image.sh
    
    sh 3_run_docker_image.sh

Make sure that the configuration specified in 3_run_docker_image.sh is correct before running the command.

Data Preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Pre-Trained Models

Pre-trained weights of super-networks and searched networks can be found here.

Training ViT-Res

To train ViT-Res-Tiny, modify IMAGENET_PATH in scripts/vit-sr-nas/reference_net/tiny.sh and run:

    sh scripts/vit-sr-nas/reference_net/tiny.sh 

We use 8 GPUs for training. Please modify numbers of GPUs (--nproc_per_node) and adjust batch size (--batch-size) if different numbers of GPUs are used.

Performing Neural Architecture Search

0. Building Sub-Train and Sub-Val Set

Modify _SOURCE_DIR, _SUB_TRAIN_DIR, and _SUB_VAL_DIR in search_utils/build_subset.py, and run:

    cd search_utils
    
    python build_subset.py
    
    cd ..

1. Super-Network Training

Before running each script, modify IMAGENET_PATH (directed to the directory containing the sub-train and sub-val sets).

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/super_net/tiny.sh

For ViT-ResNAS-Small and Medium, run:

    sh scripts/vit-sr-nas/super_net/small.sh

2. Evolutionary Search

Before running each script, modify IMAGENET_PATH (directed to the directory containing the sub-train and sub-val sets) and MODEL_PATH.

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/evolutionary_search/tiny.sh

For ViT-ResNAS-Small, run:

    sh scripts/vit-sr-nas/evolutionary_search/[email protected]

For ViT-ResNAS-Medium, run:

    sh scripts/vit-sr-nas/evolutionary_search/[email protected]

After running evolutionary search for each network, see summary.txt in output directory and modify network_def.

For example, the network_def in summary.txt is ((4, 220), (1, (220, 5, 32), (220, 880), 1), (1, (220, 5, 32), (220, 880), 1), (1, (220, 7, 32), (220, 800), 1), (1, (220, 7, 32), (220, 800), 0), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (3, 220, 440), (1, (440, 10, 48), (440, 1760), 1), (1, (440, 10, 48), (440, 1440), 1), (1, (440, 10, 48), (440, 1920), 1), (1, (440, 10, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1120), 0), (1, (440, 12, 48), (440, 1440), 1), (3, 440, 880), (1, (880, 16, 64), (880, 3200), 1), (1, (880, 12, 64), (880, 3200), 1), (1, (880, 16, 64), (880, 2880), 1), (1, (880, 12, 64), (880, 3200), 0), (1, (880, 12, 64), (880, 2240), 1), (1, (880, 12, 64), (880, 3520), 0), (1, (880, 14, 64), (880, 2560), 1), (2, 880, 1000)).

Remove the element in the tuple that has 1 in the first element and 0 in the last element (e.g. (1, (220, 5, 32), (220, 880), 0)).

This reflects that the transformer block is removed in a searched network.

After this modification, the network_def becomes ((4, 220), (1, (220, 5, 32), (220, 880), 1), (1, (220, 5, 32), (220, 880), 1), (1, (220, 7, 32), (220, 800), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (3, 220, 440), (1, (440, 10, 48), (440, 1760), 1), (1, (440, 10, 48), (440, 1440), 1), (1, (440, 10, 48), (440, 1920), 1), (1, (440, 10, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1440), 1), (3, 440, 880), (1, (880, 16, 64), (880, 3200), 1), (1, (880, 12, 64), (880, 3200), 1), (1, (880, 16, 64), (880, 2880), 1), (1, (880, 12, 64), (880, 2240), 1), (1, (880, 14, 64), (880, 2560), 1), (2, 880, 1000)).

Then, use the searched network_def for searched network training.

3. Searched Network Training

Before running each script, modify IMAGENET_PATH.

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/searched_net/tiny.sh

For ViT-ResNAS-Small, run:

    sh scripts/vit-sr-nas/searched_net/[email protected]

For ViT-ResNAS-Medium, run:

    sh scripts/vit-sr-nas/searched_net/[email protected]

4. Fine-tuning Trained Networks at Higher Resolution

Before running, modify IMAGENET_PATH and FINETUNE_PATH (directed to trained ViT-ResNAS-Medium checkpoint). Then, run:

    sh scripts/vit-sr-nas/finetune/[email protected]

To fine-tune at different resolutions, modify --model, --input-size and --mix-patch-len. We provide models at resolutions 280, 336, and 392 as shown in here. Note that --input-size must be equal to "56 * --mix-patch-len" since the spatial size in ViT-ResNAS is reduced by 56X.

Evaluation

Before running, modify IMAGENET_PATH and MODEL_PATH. Then, run:

    sh scripts/vit-sr-nas/eval/[email protected]

Questions

Please direct questions to Yi-Lun Liao ([email protected]).

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file.

Owner
Yi-Lun Liao
Yi-Lun Liao
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021