This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Overview

Jump Reward Inference for 1D Music Rhythmic State Spaces

An implementation of the probablistic jump reward inference model for music rhythmic information retrieval using the proposed 1D state space.

PyPI CC BY 4.0

This repository contains the source code and demo videos of a joint music rhythmic analyzer system using the 1D state space and jump reward technique proposed in ICASSP-2022. This implementation includes music beat, downbeat, tempo, and meter tracking jointly and in a causal fashion.

arXiv 2111.00704

The model first takes the waveform to the spectral domain and then feeds them into one of the pre-trained BeatNet models to obtain beat/downbeat activations. Finally, the activations are used in a jump-reward inference model to infer beats, downbeats, tempo, and meter.

System Input:

Raw audio waveform

System Output:

A vector including beats, downbeats, local tempo, and local meter columns, respectively and with the following shape: numpy_array(num_beats, 4).

Installation Command:

Approach #1: Installing binaries from the pypi website:

pip install jump-reward-inference

Approach #2: Installing directly from the Git repository:

pip install git+https://github.com/mjhydri/1D-StateSpace

Usage Example:

estimator = joint_inference(1, plot=True) 

output = estimator.process("music file directory")

Video Demos:

This section demonstrates the system performance for several music genres. Each demo comprises four plots that are described as follows:

  • The first plot: 1D state space for music beat and tempo tracking. Each bar represents the posterior probability of the corresponding state at each time frame.
  • The second plot: The jump-back reward vector for the corresponding beat states.
  • The third plot:1D state space for music downbeat and meter tracking.
  • The fourth plot: The jump-back reward vector for the corresponding downbeat states.

1: Music Genre: Pop

Easy song

2: Music Genre: Country

Easy song

3: Music Genre: Reggae

Easy song

4: Music Genre: Blues

Easy song

5: Music Genre: Classical

Easy song

Demos Discussion:

1- As demo videos suggest, the system infers multiple music rhythmic parameters, including music beat, downbeat, tempo and meter jointly and in an online fashion using very compact 1D state spaces and jump back reward technique. The system works suitably for different music genres. However, the process is relatively more straightforward for some genres such as pop and country due to the rich percussive content, solid attacks, and simpler rhythmic structures. In contrast, it is more challenging for genres with poor percussive profile, longer attack times, and more complex rhythmic structures such as classical music.

2- Since both neural networks and inference models are designed for online/real-time applications, the causalilty constrains are applied and future data is not accessible. It makes the jumpback weigths weaker initially and become stronger over time.

3- Given longer listening time is required to infer higher hierarchies, i.e., downbeat and meter, within the very early few seconds, downbeat results are less confident than lower hierarchies, i.e., beat and tempo, however, they get accurate after observing a bar period.

Acknowledgement

This work has been partially supported by the National Science Foundation grant 1846184.

References:

M. Heydari, M. McCallum, A. Ehmann and Z. Duan, "A Novel 1D State Space for Efficient Music Rhythmic Analysis", In Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2022. #(Submitted)

M. Heydari, F. Cwitkowitz, and Z. Duan, “BeatNet:CRNN and particle filtering for online joint beat down-beat and meter tracking,” in Proc. of the 22th Intl. Conf.on Music Information Retrieval (ISMIR), 2021.

M. Heydari and Z. Duan, “Don’t Look Back: An online beat tracking method using RNN and enhanced particle filtering,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2021.

You might also like...
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Comments
  • Tempo off by 5 consistently

    Tempo off by 5 consistently

    Hi Mojtaba,

    I was trying out your package but find that the reported tempo is off consistently by 5. The easiest test of this is to use 808kick120bpm.mp3 from the beatnet package, though I found the same thing with another music sample. Beatnet reports the. correct tempo.

    Any idea what might cause this?

    Best, Alex

    opened by akhudek 0
Releases(v0.0.6)
Owner
Mojtaba Heydari
Ph.D. student at Audio Information Retrieval (AIR) Lab-University of Rochester, Research Intern at SiriusXM/Pandora
Mojtaba Heydari
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022