Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

Overview

CMaskTrack R-CNN for OVIS

This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation dataset described in the tech report:

Occluded Video Instance Segmentation

Jiyang Qi1,2*, Yan Gao2*, Yao Hu2, Xinggang Wang1, Xiaoyu Liu2,
Xiang Bai1, Serge Belongie3, Alan Yuille4, Philip Torr5, Song Bai2,5 📧
1Huazhong University of Science and Technology 2Alibaba Group 3University of Copenhagen
4Johns Hopkins University 5University of Oxford

In this work, we collect a large-scale dataset called OVIS for Occluded Video Instance Segmentation. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario.

We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion.

Some annotation examples can be seen below:

2592056 2930398 2932104 3021160

For more details about the dataset, please refer to our paper or website.

Model training and evaluation

Installation

This repo is built based on MaskTrackRCNN. A customized COCO API for the OVIS dataset is also provided.

You can use following commands to create conda env with all dependencies.

conda create -n cmtrcnn python=3.6 -y
conda activate cmtrcnn

conda install -c pytorch pytorch=1.3.1 torchvision=0.2.2 cudatoolkit=10.1 -y
pip install -r requirements.txt
pip install git+https://github.com/qjy981010/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

bash compile.sh

Data preparation

  1. Download OVIS from our website.
  2. Symlink the train/validation dataset to data/OVIS/ folder. Put COCO-style annotations under data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── OVIS
│   │   ├── train_images
│   │   ├── valid_images
│   │   ├── annotations
│   │   │   ├── annotations_train.json
│   │   │   ├── annotations_valid.json

Training

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on OVIS based on a MSCOCO pretrained checkpoint (mmlab link or google drive).

Run the command below to train the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py --work_dir ./workdir/cmasktrack_rcnn_r50_fpn_1x_ovis --gpus 4

For reference to arguments such as learning rate and model parameters, please refer to configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py.

Evaluation

Our pretrained model is available for download at Google Drive (comming soon). Run the following command to evaluate the model on OVIS.

CUDA_VISIBLE_DEVICES=0 python test_video.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py [MODEL_PATH] --out [OUTPUT_PATH.pkl] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.pkl.json. OVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license, while the correlation ops is under MIT license.

Acknowledgement

This project is based on mmdetection (commit hash f3a939f), mmcv, MaskTrackRCNN and Pytorch-Correlation-extension. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@article{qi2021occluded,
    title={Occluded Video Instance Segmentation},
    author={Jiyang Qi and Yan Gao and Yao Hu and Xinggang Wang and Xiaoyu Liu and Xiang Bai and Serge Belongie and Alan Yuille and Philip Torr and Song Bai},
    journal={arXiv preprint arXiv:2102.01558},
    year={2021},
}
Owner
Q . J . Y
A coder from hust
Q . J . Y
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023