Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

Overview

人像卡通化 (Photo to Cartoon)

中文版 | English Version

该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

也可以前往我们的ai开放平台进行在线体验:https://ai.minivision.cn/#/coreability/cartoon

技术交流QQ群:937627932

Updates

简介

人像卡通风格渲染的目标是,在保持原图像ID信息和纹理细节的同时,将真实照片转换为卡通风格的非真实感图像。我们的思路是,从大量照片/卡通数据中习得照片到卡通画的映射。一般而言,基于成对数据的pix2pix方法能达到较好的图像转换效果,但本任务的输入输出轮廓并非一一对应,例如卡通风格的眼睛更大、下巴更瘦;且成对的数据绘制难度大、成本较高,因此我们采用unpaired image translation方法来实现。

Unpaired image translation流派最经典方法是CycleGAN,但原始CycleGAN的生成结果往往存在较为明显的伪影且不稳定。近期的论文U-GAT-IT提出了一种归一化方法——AdaLIN,能够自动调节Instance Norm和Layer Norm的比重,再结合attention机制能够实现精美的人像日漫风格转换。

与夸张的日漫风不同,我们的卡通风格更偏写实,要求既有卡通画的简洁Q萌,又有明确的身份信息。为此我们增加了Face ID Loss,使用预训练的人脸识别模型提取照片和卡通画的ID特征,通过余弦距离来约束生成的卡通画。

此外,我们提出了一种Soft-AdaLIN(Soft Adaptive Layer-Instance Normalization)归一化方法,在反规范化时将编码器的均值方差(照片特征)与解码器的均值方差(卡通特征)相融合。

模型结构方面,在U-GAT-IT的基础上,我们在编码器之前和解码器之后各增加了2个hourglass模块,渐进地提升模型特征抽象和重建能力。

由于实验数据较为匮乏,为了降低训练难度,我们将数据处理成固定的模式。首先检测图像中的人脸及关键点,根据人脸关键点旋转校正图像,并按统一标准裁剪,再将裁剪后的头像输入人像分割模型去除背景。

Start

安装依赖库

项目所需的主要依赖库如下:

  • python 3.6
  • pytorch 1.4
  • tensorflow-gpu 1.14
  • face-alignment
  • dlib
  • onnxruntime

Clone:

git clone https://github.com/minivision-ai/photo2cartoon.git
cd ./photo2cartoon

下载资源

谷歌网盘 | 百度网盘 提取码:y2ch

  1. 人像卡通化预训练模型:photo2cartoon_weights.pt(20200504更新),存放在models路径下。
  2. 头像分割模型:seg_model_384.pb,存放在utils路径下。
  3. 人脸识别预训练模型:model_mobilefacenet.pth,存放在models路径下。(From: InsightFace_Pytorch
  4. 卡通画开源数据:cartoon_data,包含trainBtestB
  5. 人像卡通化onnx模型:photo2cartoon_weights.onnx 谷歌网盘,存放在models路径下。

测试

将一张测试照片(亚洲年轻女性)转换为卡通风格:

python test.py --photo_path ./images/photo_test.jpg --save_path ./images/cartoon_result.png

测试onnx模型

python test_onnx.py --photo_path ./images/photo_test.jpg --save_path ./images/cartoon_result.png

训练

1.数据准备

训练数据包括真实照片和卡通画像,为降低训练复杂度,我们对两类数据进行了如下预处理:

  • 检测人脸及关键点。
  • 根据关键点旋转校正人脸。
  • 将关键点边界框按固定的比例扩张并裁剪出人脸区域。
  • 使用人像分割模型将背景置白。

我们开源了204张处理后的卡通画数据,您还需准备约1000张人像照片(为匹配卡通数据,尽量使用亚洲年轻女性照片,人脸大小最好超过200x200像素),使用以下命令进行预处理:

python data_process.py --data_path YourPhotoFolderPath --save_path YourSaveFolderPath

将处理后的数据按照以下层级存放,trainAtestA中存放照片头像数据,trainBtestB中存放卡通头像数据。

├── dataset
    └── photo2cartoon
        ├── trainA
            ├── xxx.jpg
            ├── yyy.png
            └── ...
        ├── trainB
            ├── zzz.jpg
            ├── www.png
            └── ...
        ├── testA
            ├── aaa.jpg 
            ├── bbb.png
            └── ...
        └── testB
            ├── ccc.jpg 
            ├── ddd.png
            └── ...

2.训练

重新训练:

python train.py --dataset photo2cartoon

加载预训练参数:

python train.py --dataset photo2cartoon --pretrained_weights models/photo2cartoon_weights.pt

多GPU训练(仍建议使用batch_size=1,单卡训练):

python train.py --dataset photo2cartoon --batch_size 4 --gpu_ids 0 1 2 3

Q&A

Q:为什么开源的卡通化模型与小程序中的效果有差异?

A:开源模型的训练数据收集自互联网,为了得到更加精美的效果,我们在训练小程序中卡通化模型时,采用了定制的卡通画数据(200多张),且增大了输入分辨率。此外,小程序中的人脸特征提取器采用自研的识别模型,效果优于本项目使用的开源识别模型。

Q:如何选取效果最好的模型?

A:首先训练模型200k iterations,然后使用FID指标挑选出最优模型,最终挑选出的模型为迭代90k iterations时的模型。

Q:关于人脸特征提取模型。

A:实验中我们发现,使用自研的识别模型计算Face ID Loss训练效果远好于使用开源识别模型,若训练效果出现鲁棒性问题,可尝试将Face ID Loss权重置零。

Q:人像分割模型是否能用与分割半身像?

A:不能。该模型是针对本项目训练的专用模型,需先裁剪出人脸区域再输入。

Tips

我们开源的模型是基于亚洲年轻女性训练的,对于其他人群覆盖不足,您可根据使用场景自行收集相应人群的数据进行训练。我们的开放平台提供了能够覆盖各类人群的卡通化服务,您可前往体验。如有定制卡通风格需求请联系商务:18852075216。

参考

U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation [Paper][Code]

InsightFace_Pytorch

Owner
Minivision_AI
Minivision_AI
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023