Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

Overview

H-Transformer-1D

Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs.

For now, the H-Transformer will only act as a long-context encoder

Install

$ pip install h-transformer-1d

Usage

import torch
from h_transformer_1d import HTransformer1D

model = HTransformer1D(
    num_tokens = 256,          # number of tokens
    dim = 512,                 # dimension
    depth = 2,                 # depth
    max_seq_len = 8192,        # maximum sequence length
    heads = 8,                 # heads
    dim_head = 64,             # dimension per head
    block_size = 128           # block size
)

x = torch.randint(0, 256, (1, 8000))   # variable sequence length
mask = torch.ones((1, 8000)).bool()    # variable mask length

# network will automatically pad to power of 2, do hierarchical attention, etc

logits = model(x, mask = mask) # (1, 8000, 256)

Citations

@misc{zhu2021htransformer1d,
    title   = {H-Transformer-1D: Fast One-Dimensional Hierarchical Attention for Sequences}, 
    author  = {Zhenhai Zhu and Radu Soricut},
    year    = {2021},
    eprint  = {2107.11906},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Masking not working in training, thanks

    Masking not working in training, thanks

    Hi, I have tried to train the model on GPU with masking enabled. The line 94 t = torch.flip(t, dims = (2,)) reports an error: RuntimeError: "flip_cuda" not implemented for 'Bool', even though I have tried to move mask to CPU.

    Any ideas to solve the problem? Thanks a lot.

    opened by junyongyou 6
  • Application to sequence classification?

    Application to sequence classification?

    Hi,

    Forgive the naive question, I am trying to make sense of this paper but it's tough going. If I understand correctly, this attention mechanism focuses mainly on nearby tokens and only attends to distant tokens via a hierarchical, low-rank approximation. In that case, can the usual sequence classification approach of having a global [CLS] token that can attend to all other tokens (and vice versa) still work? If not, how can this attention mechanism handle the text classification tasks in the long range arena benchmark?

    Cheers for whatever insights you can share, and thanks for the great work!

    opened by trpstra 4
  • eos token does not work in batch mode generation

    eos token does not work in batch mode generation

    When generating the sequence with current code it seems the eos_token will work when generating one sequence at a time https://github.com/lucidrains/h-transformer-1d/blob/main/h_transformer_1d/autoregressive_wrapper.py#L59

    opened by tmphex 4
  • RuntimeError: Tensor type unknown to einops <class 'torch.return_types.max'>

    RuntimeError: Tensor type unknown to einops

    lib/python3.7/site-packages/einops/_backends.py", line 52, in get_backend raise RuntimeError('Tensor type unknown to einops {}'.format(type(tensor)))

    RuntimeError: Tensor type unknown to einops <class 'torch.return_types.max'>

    I understand why this gets raised. Could it be a pytorch version problem? Mine is 1.6.0

    opened by wajihullahbaig 4
  • Algorithm Mismatch

    Algorithm Mismatch

    Paper Implementation

    In the implementation, we get blocked Q, K, V tensors by level with the code below.

    https://github.com/lucidrains/h-transformer-1d/blob/110cab0038898560d72d460bfef8ca8b7f17f0a5/h_transformer_1d/h_transformer_1d.py#L164-L179

    And return the final result of matrix-matrix product with Equation 29 or 69 with the for loop below.

    https://github.com/lucidrains/h-transformer-1d/blob/110cab0038898560d72d460bfef8ca8b7f17f0a5/h_transformer_1d/h_transformer_1d.py#L234-L247

    What is problem?

    However, according to the current code, it is not possible to include information about the level 0 white blocks in the figure below. (Equation 70 of the paper includes the corresponding attention matrix entries.)

    fig2

    I think you should also add an off-diagonal term of near-interaction (level 0) to match Equation 69!

    opened by jinmang2 3
  • I have some questions about implementation details

    I have some questions about implementation details

    Thanks for making your implementation public. I have three questions about your h-transformer 1d implementation.

    1. The number of levels M

    https://github.com/lucidrains/h-transformer-1d/blob/63063d5bb036b56a7205aadc5c8198da02d698f6/h_transformer_1d/h_transformer_1d.py#L105-L114

    In papers, eq (32) gives a guide on how M is determined.

    img1

    In your code implementations,

    • n is sequence length which is not padded
    • bsz is block size (is same to N_r which is numerical rank of the off-diagonal blocks)
    • Because code line 111 already contains level 0, M is equal to int(log2(n // bsz)) - 1

    However, in the Section 6.1 Constructing Hierarchical Attention, I found that sequence length(L) must be a multiple of 2. In my opinion, eq (31)'s L is equal to 2^{M+1}. In implementation, n is not padded sequence. So one of M is missing.

    Since x is the sequence padded by processing below, https://github.com/lucidrains/h-transformer-1d/blob/63063d5bb036b56a7205aadc5c8198da02d698f6/h_transformer_1d/h_transformer_1d.py#L83-L91

    I think the above implementation should be modified as below

    107    num_levels = int(log2(x.size(1) // bsz)) - 1 
    

    2. Super- and Sub-diagonal blocks of the coarsened matrix \tilde{A} as level-l

    https://github.com/lucidrains/h-transformer-1d/blob/63063d5bb036b56a7205aadc5c8198da02d698f6/h_transformer_1d/h_transformer_1d.py#L190-L198

    Ys conatins y and A computed as calculate_Y_and_A. For examples,

    # Ys
    [
        (batch_size*n_heads, N_b(2), N_r), (batch_size*n_heads, N_b(2)),  # level 2, (Y(2), tilde_A(2))
        (batch_size*n_heads, N_b(1), N_r), (batch_size*n_heads, N_b(1)),  # level 1, (Y(1), tilde_A(1))
        (batch_size*n_heads, N_b(0), N_r), (batch_size*n_heads, N_b(0)),  # level 0, (Y(0), tilde_A(0))
    ]
    

    In eq (29), Y is calculated as Y = AV = Y(0) + P(0)( Y(1) + P(1)Y(2) ) However, in code line 190, Y is calculated using only level-0 and level-1 blocks, no matter how many M there are. Y = AV = Y(0) + P(0)Y(1)

    Does increasing the level cause performance degradation issues in implementation? I'm so curious!


    3. Comparison with Luna: Linear Unified Nested Attention

    h-transformer significantly exceeded the scores of BigBird and Luna in LRA. However, what I regretted while reading the paper was that there was no comparison of computation time with other sub-quadratic and Luna. Is this algorithm much faster than other sub-quadratic? And how about compared to Luna?


    Thanks again for the implementation release! The idea of ​​calculating off-diagonal with flip was amazing and I learned a lot. Thank you!! 😄

    opened by jinmang2 3
  • Add Norm Missing

    Add Norm Missing

    I am using code now, and i wonder is there implemented add norm? I only find layer norm, but no add operation. Here is code in h-transformer-1d.py line 489 ... Is this a bug or something ? Thanks @Lucidrains

    for ind in range(depth): attn = attn_class(dim, dim_head = dim_head, heads = heads, block_size = block_size, pos_emb = self.pos_emb, **attn_kwargs) ff = FeedForward(dim, mult = ff_mult)

            if shift_tokens:
                attn, ff = map(lambda t: PreShiftTokens(shift_token_ranges, t), (attn, ff))
    
            attn, ff = map(lambda t: PreNorm(dim, t), (attn, ff))
            layers.append(nn.ModuleList([attn ,ff]))_
    
    opened by wwx13 2
  • Mask not working

    Mask not working

    def forward(self, x, mask = None):
        b, n, device = *x.shape, x.device
        assert n <= self.max_seq_len, 'sequence length must be less than the maximum sequence length'
        x = self.token_emb(x)
        x = self.layers(x)
        return self.to_logits(x)
    

    I think... Masking does not work ???

    opened by wwx13 2
  • One simple question

    One simple question

    Hi, Phil!

    One simple question, (my math is not good) https://github.com/lucidrains/h-transformer-1d/blob/7c11d036d53926495ec0917a34a1aad7261892b5/train.py#L65

    why not be randint(0, self.data.size(0)-self.seq_len+1)? Since the high part should be excluded

    opened by CiaoHe 2
  • Mini-batching (b > 1) does not work with masking

    Mini-batching (b > 1) does not work with masking

    When using x and mask that have batch size larger than 1 following error is arises:

    import torch
    from h_transformer_1d import HTransformer1D
    
    model = HTransformer1D(
        num_tokens = 256,          # number of tokens
        dim = 512,                 # dimension
        depth = 2,                 # depth
        causal = False,            # autoregressive or not
        max_seq_len = 8192,        # maximum sequence length
        heads = 8,                 # heads
        dim_head = 64,             # dimension per head
        block_size = 128           # block size
    )
    
    batch_size = 2
    x = torch.randint(0, 256, (batch_size, 8000))   # variable sequence length
    mask = torch.ones((batch_size, 8000)).bool()    # variable mask length
    
    # network will automatically pad to power of 2, do hierarchical attention, etc
    
    logits = model(x, mask = mask) # (1, 8000, 256)
    

    Gives following error:

    ~/git/h-transformer-1d/h_transformer_1d/h_transformer_1d.py in masked_aggregate(tensor, mask, dim, average)
         19     diff_len = len(tensor.shape) - len(mask.shape)
         20     mask = mask[(..., *((None,) * diff_len))]
    ---> 21     tensor = tensor.masked_fill(~mask, 0.)
         22 
         23     total_el = mask.sum(dim = dim)
    
    RuntimeError: The size of tensor a (2) must match the size of tensor b (16) at non-singleton dimension 0
    

    It seems the tensor has shape heads * batch in 0 dimension and not batch what mask has.

    opened by jaak-s 2
  • Example in README does not work

    Example in README does not work

    Executing the example:

    import torch
    from h_transformer_1d import HTransformer1D
    
    model = HTransformer1D(
        num_tokens = 256,          # number of tokens
        dim = 512,                 # dimension
        depth = 2,                 # depth
        causal = False,            # autoregressive or not
        max_seq_len = 8192,        # maximum sequence length
        heads = 8,                 # heads
        dim_head = 64,             # dimension per head
        block_size = 128           # block size
    )
    
    x = torch.randint(0, 256, (1, 8000))   # variable sequence length
    mask = torch.ones((1, 8000)).bool()    # variable mask length
    
    # network will automatically pad to power of 2, do hierarchical attention, etc
    
    logits = model(x, mask = mask) # (1, 8000, 256)
    

    Gives the following error:

    ~/miniconda3/lib/python3.7/site-packages/rotary_embedding_torch/rotary_embedding_torch.py in apply_rotary_emb(freqs, t, start_index)
         43     assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
         44     t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
    ---> 45     t = (t * freqs.cos()) + (rotate_half(t) * freqs.sin())
         46     return torch.cat((t_left, t, t_right), dim = -1)
         47 
    
    RuntimeError: The size of tensor a (8192) must match the size of tensor b (8000) at non-singleton dimension 1
    
    opened by jaak-s 2
  • Fix indexing

    Fix indexing

    I am fixing a few apparent bugs in the code. The upshot is that the attention now supports a block size of the (next largest power of two) of the input length, and for this value of the block size it becomes exact. This allows one to look at the systematic error in the output as a function of decreased block size (and memory usage).

    I've found this module to reduce memory consumption by a factor of two, but the approximation quickly becomes too inaccurate with decreasing block size to use it as a drop-in replacement for an existing (full) attention layer.

    This repository shows how to compute the full attention with linear memory complexity: https://github.com/CHARM-Tx/linear_mem_attention_pytorch

    opened by jglaser 0
  • Approximated values are off

    Approximated values are off

    I wrote a simple test to check the output of the hierarchical transformer self attention against the BERT self attention from huggingface transformers.

    import torch
    import torch.nn as nn
    import math
    
    from h_transformer_1d.h_transformer_1d import HAttention1D
    
    def transpose_for_scores(x, num_attention_heads, attention_head_size):
        new_x_shape = x.size()[:-1] + (num_attention_heads, attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)
    
    def bert_self_attention(query, key, value_layer, attention_mask=None, num_attention_heads=1):
            dim_head = query.size()[-1] // num_attention_heads
            all_head_size = dim_head*num_attention_heads
    
            query_layer = transpose_for_scores(query, num_attention_heads, dim_head)
            key_layer = transpose_for_scores(key, num_attention_heads, dim_head)
            value_layer = transpose_for_scores(value, num_attention_heads, dim_head)
    
            # Take the dot product between "query" and "key" to get the raw attention scores.
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
    
            attention_scores = attention_scores / math.sqrt(dim_head)
    
            if attention_mask is not None:
                # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
                attention_scores = attention_scores + attention_mask
    
            # Normalize the attention scores to probabilities.
            attention_probs = nn.functional.softmax(attention_scores, dim=-1)
    
            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            #attention_probs = self.dropout(attention_probs)
    
            context_layer = torch.matmul(attention_probs, value_layer)
    
            context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
            new_context_layer_shape = context_layer.size()[:-2] + (all_head_size,)
            context_layer = context_layer.view(*new_context_layer_shape)
    
            return context_layer, attention_probs
    
    if __name__ == "__main__":
        query = torch.tensor([[[0.1,0.2],[-0.5,0.7],[-0.5,-0.75],[.123,.456]]])
    #    query = torch.tensor([[[0.1,0.2],[-0.5,0.7]]])
        key = value = query
    
        n_heads = 1
        attn, probs = bert_self_attention(query, key, value, num_attention_heads=n_heads)
        print('bert_self_attention out: ', attn)
    
        block_size = 1
        for _ in range(0,2):
            dim_head = query.size()[-1]//n_heads
            h_attn = HAttention1D(
                dim=query.size()[-1],
                heads=n_heads,
                dim_head=dim_head,
                block_size=block_size
            )
    
            h_attn.to_qkv = torch.nn.Identity()
            h_attn.to_out = torch.nn.Identity()
    
            qkv = torch.stack([query, key, value], dim=2)
            qkv = torch.flatten(qkv, start_dim=2)
    
            attn_scores = h_attn(qkv)
            print('hattention_1d: (block_size = {})'.format(block_size), attn_scores)
    
            block_size *= 2
    

    This is the output I get

    bert_self_attention:  tensor([[[-0.1807,  0.1959],
             [-0.2096,  0.2772],
             [-0.2656, -0.0568],
             [-0.1725,  0.2442]]])
    hattention_1d: (block_size = 1) tensor([[[-0.2000,  0.4500],
             [-0.2000,  0.4500],
             [-0.1885, -0.1470],
             [-0.1885, -0.1470]]])
    

    before it errors out with

    assert num_levels >= 0, 'number of levels must be at least greater than 0'
    

    Some of the values are off in absolute magnitude by more than a factor of two.

    Looking at the code, this line seems problematic: https://github.com/lucidrains/h-transformer-1d/blob/8afd75cc6bc41754620bb6ab3737176cb69bdf93/h_transformer_1d/h_transformer_1d.py#L172

    I believe it should read

    num_levels = int(log2(pad_to_len // bsz)) - 1
    

    If I make that change, the approximated attention output is much closer to the exact one:

    bert_self_attention out:  tensor([[[-0.1807,  0.1959],
             [-0.2096,  0.2772],
             [-0.2656, -0.0568],
             [-0.1725,  0.2442]]])
    hattention_1d: (block_size = 1) tensor([[[-0.2590,  0.2020],
             [-0.2590,  0.2020],
             [-0.2590,  0.2020],
             [-0.2590,  0.2020]]])
    hattention_1d: (block_size = 2) tensor([[[-0.1808,  0.1972],
             [-0.1980,  0.2314],
             [-0.2438,  0.0910],
             [-0.1719,  0.2413]]])
    
    opened by jglaser 1
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022