OptNet: Differentiable Optimization as a Layer in Neural Networks

Overview

OptNet: Differentiable Optimization as a Layer in Neural Networks

This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our ICML 2017 paper OptNet: Differentiable Optimization as a Layer in Neural Networks.

If you find this repository helpful in your publications, please consider citing our paper.

@InProceedings{amos2017optnet,
  title = {{O}pt{N}et: Differentiable Optimization as a Layer in Neural Networks},
  author = {Brandon Amos and J. Zico Kolter},
  booktitle = {Proceedings of the 34th International Conference on Machine Learning},
  pages = {136--145},
  year = {2017},
  volume = {70},
  series = {Proceedings of Machine Learning Research},
  publisher ={PMLR},
}

Informal Introduction

Mathematical optimization is a well-studied language of expressing solutions to many real-life problems that come up in machine learning and many other fields such as mechanics, economics, EE, operations research, control engineering, geophysics, and molecular modeling. As we build our machine learning systems to interact with real data from these fields, we often cannot (but sometimes can) simply ``learn away'' the optimization sub-problems by adding more layers in our network. Well-defined optimization problems may be added if you have a thorough understanding of your feature space, but oftentimes we don't have this understanding and resort to automatic feature learning for our tasks.

Until this repository, no modern deep learning library has provided a way of adding a learnable optimization layer (other than simply unrolling an optimization procedure, which is inefficient and inexact) into our model formulation that we can quickly try to see if it's a nice way of expressing our data.

See our paper OptNet: Differentiable Optimization as a Layer in Neural Networks and code at locuslab/optnet if you are interested in learning more about our initial exploration in this space of automatically learning quadratic program layers for signal denoising and sudoku.

Setup and Dependencies

  • Python/numpy/PyTorch
  • qpth: Our fast QP solver for PyTorch released in conjunction with this paper.
  • bamos/block: Our intelligent block matrix library for numpy, PyTorch, and beyond.
  • Optional: bamos/setGPU: A small library to set CUDA_VISIBLE_DEVICES on multi-GPU systems.

Denoising Experiments

denoising
├── create.py - Script to create the denoising dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet denoising experiments. (See arguments.)
├── main.tv.py - Run the TV baseline denoising experiment.
└── run-exps.sh - Run all experiments. (May need to uncomment some lines.)

Sudoku Experiments

  • The dataset we used in our experiments is available in sudoku/data.
sudoku
├── create.py - Script to create the dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet Sudoku experiments. (See arguments.)
└── models.py - Models used for Sudoku.

Classification Experiments

cls
├── train.py - Run the FC baseline and OptNet classification experiments. (See arguments.)
├── plot.py - Plot the results from any experiment.
└── models.py - Models used for classification.

Acknowledgments

The rapid development of this work would not have been possible without the immense amount of help from the PyTorch team, particularly Soumith Chintala and Adam Paszke.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023