Code for the paper Task Agnostic Morphology Evolution.

Overview

Task-Agnostic Morphology Optimization

This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Abbeel, and Lerrel Pinto published at ICLR 2021.

The code has been cleaned up to make it easier to use. An older version of the code was made available with the ICLR submission here.

Setup

The code was tested and used on Ubuntu 20.04. Our baseline implementations use taskset, an ubuntu program for setting CPU affinity. You need taskset to run some of the experiments, and the code will fail without it.

Install the conda environment using the provided file via the command conda env create -f environment.yml. Given this project involves only state based RL, the environment does not install CUDA and the code is setup to use CPU. Activate the environment with conda activate morph_opt.

Next, make sure to install the optimal_agents package by running pip install -e . from the github directory. This will use the setup.py file.

The code is built on top of Stable Baselines 3, Pytorch, and Pytorch Geometric. The exact specified version of stable baselines 3 is required.

Running Experiments

Currently, configs for the 2D experiments have been pushed to the repo. I'm working on pushing more config files that form the basis for the experiments run. To run large scale experiments for the publication, we used additional AWS tools.

Evolution experiments can be run using the train_ea.py script found in the scripts directory. Below are example commands for running different morphology evolution algorithms:

python scripts/train_ea.py -p configs/locomotion2d/2d_tame.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_tamr.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_no_pruning.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_pruning.yaml

After running evolution to discover good morphologies, you can evaluate them using PPO via the provided eval configs.

python scripts/train_rl.py -p configs/locomotion2d/2d_eval.yaml

Note that you have to edit the config file to include either the path to the optimized morphology or a predefined type like random2d or cheetah. We evaluate all morphologies across a number of different environments. The provided configuration file runs evaluations for just one.

To better keep track of the experiment names, you can edit the name field in the config files.

By default, experiments are saved to the data directory. This can be changed by providing an output location with the -o flag.

Rendering, Testing, and Plotting

See the test scripts for viewing agents after they have been trained.

For plotting results like those in the paper, use the plotting scripts. Note that to use the plotting scripts correctly, a specific directory structure is required. Details for this can be found in optimal_agents/utils/plotter.py.

Citing

If you use this code. Please cite the paper.

Owner
Joey Hejna
Joey Hejna
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022