Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Related tags

Deep LearningSST
Overview

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

This repository contains the Pytorch implementation of the proposed method Self-Supervised Generative Style Transfer for One-Shot Medical ImageSegmentation , which has been recently accepted at WACV 2022.

Dependencies

We prefer to have a separate anaconda environment and the following packages to be installed.

  1. Python == 3.7
  2. tensorflow-mkl == 1.15
  3. pytorch == 1.6.0
  4. torchvision == 0.7.0
  5. pytorch-msssim == 0.2.1
  6. medpy == 0.4.0
  7. rasterfairy == 1.0.6
  8. visdom

Training Modes

The implementaion of our method is available in the folder OURS.

  1. Train FlowModel without Appearance Model.
python train.py --ngpus 1  --batch_size 4 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode ae --nepochs 10
  1. Train StyleEncoder
python train.py --ngpus 1 --batch_size 16 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode style_moco --nepochs 10
  1. Train Appearance Model
python train.py --ngpus 1 --batch_size 1 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode appearance_only --nepochs 10
  1. Train Adversarial Autoencoder Flow
python train.py --ngpus 1 --batch_size 2 --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --train_mode aae --nepochs 100
  1. Train End to End
python train.py --ngpus 1 --batch_size 1 --checkpoints_dir ./candi_checkpoints --checkpoints_dir_pretrained ./candi_checkpoints_pretrained --dataroot ../CANDIShare_clean_gz --train_mode end_to_end --nepochs 10

For training on OASIS dataset, please change the --dataroot argument to OASIS_clean and --nepochs 1.

Training Steps

  1. First train Unet based flow model by running 1. from Train Modes. This will be used to generate images of same styles for training the style encoder.

  2. Pre-train style-encoder by running 2. from Train Modes. This will pre-train our style encoder using volumetric contrastive loss.

  3. Train end-to-end by running 5. from Train Modes. This will train Appearance Model, Style Encoder and Flow Model end to end using pre-trained Style Encoder. set --use_pretrain to False for training Style Encoder from scratch.

  4. Generate Flow Fields in the folder ../FlowFields using trained end-to-end model by running the following command:
    python generate_flow.py

  5. Train Flow Adversarial Autoencoder by running 4. from Train Modes.

  6. Generate image segmentation pairs using python generate_fake_data.py.

  7. Train 3D Unet on the generated image segmentation dataset using the code provided in folder UNET and the following command:

python train.py --exp <NAME OF THE EXPERIMENT> --dataset_name CANDI_generated --dataset_path <PATH TO GENERATED DATASET>

Schematic description of the training phase

Evaluation Script

All evaluation scripts used to generate plots and compute dice score are included in the folder evaluations. To run a particular evaluation, run the following command provinding corresponding opt from the file run_evaluations.py:
python run_evaluations.py <opt>

Pre-trained Models

All pre trained models and datasets can be obtained from here. Please unzip the trained models inside the directory submission_id_675/code/OURS.


Citation

You can find the Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation paper at http://arxiv.org/abs/2110.02117

If you find this work useful, please cite the paper:

@misc{tomar2021selfsupervised,
    title={Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation},
    author={Devavrat Tomar and Behzad Bozorgtabar and Manana Lortkipanidze and Guillaume Vray and Mohammad Saeed Rad and Jean-Philippe Thiran},
    year={2021},
    eprint={2110.02117},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Licence

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Owner
Devavrat Tomar
Devavrat Tomar
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022