The object detection pipeline is based on Ultralytics YOLOv5

Overview

AYOLOv2

License: GPL v3

All Contributors

The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptability to apply new experimental methods. The object detection pipeline is based on Ultralytics YOLOv5.

What's inside of this repository

  1. YOLOv5 based portable model (model built with kindle)
  2. Model conversion (TorchScript, ONNX, TensorRT) support
  3. Tensor decomposition model with pruning optimization
  4. Stochastic Weight Averaging(SWA) support
  5. Auto search for NMS parameter optimization
  6. W&B support with model save and load functionality
  7. Representative Learning (Experimental)
  8. Distillation via soft teacher method (Experimental)
  9. C++ inference (WIP)
  10. AutoML - searching efficient architecture for the given dataset(incoming!)

Table of Contents

How to start

Install

Using conda environment

git clone https://github.com/j-marple-dev/AYolov2.git
cd AYolov2
./run_check.sh init
# Equivalent to
# conda env create -f environment.yml
# pre-commit install --hook-type pre-commit --hook-type pre-push

Using docker

Building a docker image

./run_docker.sh build
# You can add build options
# ./run_docker.sh build --no-cache

Running the container

This will mount current repository directory from local disk to docker image

./run_docker.sh run
# You can add running options
# ./run_docker.sh run -v $DATASET_PATH:/home/user/dataset

Executing the last running container

./run_docker.sh exec
Train a model
  • Example

    python3 train.py --model $MODEL_CONFIG_PATH --data $DATA_CONFIG_PATH --cfg $TRAIN_CONFIG_PATH
    # i.e.
    # python3 train.py --model res/configs/model/yolov5s.yaml --data res/configs/data/coco.yaml --cfg res/configs/cfg/train_config.yaml
    # Logging and upload trained weights to W&B
    # python3 train.py --model res/configs/model/yolov5s.yaml --wlog --wlog_name yolov5s
    Prepare dataset
    • Dataset config file
    train_path: "DATASET_ROOT/images/train"
    val_path: "DATASET_ROOT/images/val"
    
    # Classes
    nc: 10  # number of classes
    dataset: "DATASET_NAME"
    names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light']  # class names
    • Dataset directory structure
      • One of labels or segments directory must exist.
      • Training label type(labels or segments) will be specified in the training config.
      • images and labels or segments must have a matching filename with .txt extension.
    DATASET_ROOT
    │
    ├── images
    │   ├── train
    │   └── val
    ├── labels
    │   ├── train
    │   └── val
    ├── segments
    │   ├── train
    │   └── val
    Training config
    • Default training configurations are defined in train_config.yaml.
    • You may want to change batch_size, epochs, device, workers, label_type along with your model, dataset, and training hardware.
    • Be cautious to change other parameters. It may affect training results.
    Model config
    Multi-GPU training
    • Please use torch.distributed.run module for multi-GPU Training
    python3 -m torch.distributed.run --nproc_per_node $N_GPU train.py --model $MODEL_CONFIG_PATH --data $DATA_CONFIG_PATH --cfg $TRAIN_CONFIG_PATH
    - N_GPU: Number of GPU to use
    
Run a model validation
  • Validate from local weights
python3 val.py --weights $WEIGHT_PATH --data-cfg $DATA_CONFIG_PATH
  • You can pass W&B path to the weights argument.
python3 val.py --weights j-marple/AYolov2/179awdd1 --data-cfg $DATA_CONFIG_PATH
  • TTA (Test Time Augmentation)
python3 val.py --weights $WEIGHT_PATH --data-cfg $DATA_CONFIG_PATH --tta --tta-cfg $TTA_CFG_PATH
  • Validate with pycocotools (Only for COCO val2017 images) Future work: The val.py and val2.py should be merged together.
python3 val2.py --weights $WEIGHT_PATH --data $VAL_IMAGE_PATH --json-path $JSON_FILE_PATH

Pretrained models

Name W&B URL img_size mAPval
0.5:0.95
mAPval
0.5
params
YOLOv5s j-marple/AYolov2/33cxs5tn 640 38.2 57.5 7,235,389
YOLOv5m j-marple/AYolov2/2ktlek75 640 45.0 63.9 21,190,557
YOLOv5l decomposed j-marple/AYolov2/30t7wh1x 640 46.9 65.6 26,855,105
YOLOv5l j-marple/AYolov2/1beuv3fd 640 48.0 66.6 46,563,709
YOLOv5x decomposed j-marple/AYolov2/1gxaqgk4 640 49.2 67.6 51,512,570
YOLOv5x j-marple/AYolov2/1gxaqgk4 640 49.6 68.1 86,749,405

Advanced usages

Export model to TorchScript, ONNX, TensorRT
  • You can export a trained model to TorchScript, ONNX, or TensorRT

  • INT8 quantization is currently not supported (coming soon).

  • Usage

python3 export.py --weights $WEIGHT_PATH --type [torchscript, ts, onnx, tensorrt, trt] --dtype [fp32, fp16, int8]
  • Above command will generate both model and model config file.

    • Example) FP16, Batch size 8, Image size 640x640, TensorRT
      • model_fp16_8_640_640.trt
      • model_fp16_8_640_640_trt.yaml
      batch_size: 8
      conf_t: 0.001  # NMS confidence threshold
      dst: exp/  # Model location
      dtype: fp16  # Data type
      gpu_mem: 6  # GPU memory restriction
      img_height: 640
      img_width: 640
      iou_t: 0.65  # NMS IoU threshold
      keep_top_k: 100  # NMS top k parameter
      model_cfg: res/configs/model/yolov5x.yaml  # Base model config location
      opset: 11  # ONNX opset version
      rect: false  # Rectangular inference mode
      stride_size: 32  # Model stride size
      top_k: 512  # Pre-NMS top k parameter
      type: trt  # Model type
      verbose: 1  # Verbosity level
      weights: ./exp/yolov5x.pt  # Base model weight file location
  • Once, model has been exported, you can run val.py with the exported model.

    • ONNX inference is currently not supported.
    python3 val.py --weights model_fp16_8_640_640.trt --data-cfg $DATA_CONFIG_PATH
Applying tensor decomposition
  • A trained model can be compressed via tensor decomposition.

  • Decomposed conv is composed of 3 convolutions from 1 large convolution.

    • Example)
      • Original conv: 64x128x3x3
      • Decomposed conv: 64x32x1x1 -> 32x16x3x3 -> 16x128x1x1
  • Usage

    python3 decompose_model.py --weights $WEIGHT_PATH --loss-thr $DECOMPOSE_LOSS_THRESHOLD --prune-step $PRUNING_STEP --data-cfg $DATA_CONFIG_PATH
    ...
    [  Original] # param: 86,749,405, mAP0.5: 0.678784398716757, Speed(pre-process, inference, NMS): 0.030, 21.180, 4.223
    [Decomposed] # param: 49,508,630, mAP0.5: 0.6707606125947304, Speed(pre-process, inference, NMS): 0.030, 20.274, 4.345
    Decomposition config saved to exp/decompose/val/2021_0000_runs/args.yaml
    Decomposed model saved to exp/decompose/val/2021_0000_runs/yolov5x_decomposed.pt
    • Passing prune-step to 0 will skip pruning optimization.

Summary of tensor decomposition process

  1. Pass random tensor x to original conv (ŷ) and decomposed conv ()
  2. Compute E = Error(ŷ, ỹ)
  3. If E < loss-thr, use decomposed conv
  4. Apply pruning ratio with binary search
  5. Jump to 1 until differential of pruning ratio is less than prune-step

:: Note :: Decomposition process uses CPU only.

Knowledge distillation
  • An ad-hoc implementation of the knowledge distillation motivated from the method in "End-to-end semi-supervised object dection with soft teacher".
  • Create pseudo-labels for "unlabeled dataset" using the inference of the "teacher" model.
  • :: Note ::
    • Implemented to use the same dataset for the "training dataset" and the "unlabeled dataset". To use different datasets, the creation of the dataloader instance unlabeled_loader in distillation.py should be modified.
    • Teacher model weights are fixed during training student model. (In the original paper, teacher model is updated using "exponential moving averaging" the student model.)
  • Usage
    python distillation.py --model res/configs/model/yolov5s.yaml \
                           --cfg res/configs/cfg/distillation.yam \
                           --data res/configs/data/coco.yaml \
                           --teacher {wandb_runpath_of_pretrained_model}
Representation learning
  • Representations of a model can be automatically discovered from raw data by representation learning.

  • You can apply SimpleRL or SimCLR to find better representations of the model with --rl-type option.

    • SimpleRL is a method to minimize a difference between last two representations of a model with L1 loss.
    • SimCLR is a simple framework for contrastive self-supervised learning of visual representations without requiring specialized architectures.
  • Usage (default: base)

    • SimpleRL
      python train_repr.py --model res/configs/model/yolov5s_repr.yaml \
                           --data res/configs/data/coco_repr.yaml \
                           --cfg res/configs/cfg/train_config_repr.yaml \
                           --rl-type base
    • SimCLR
      python train_repr.py --model res/configs/model/simclr.yaml \
                           --data res/configs/data/coco_repr.yaml \
                           --cfg res/configs/cfg/train_config_simclr.yaml \
                           --rl-type simclr
Auto search for NMS parameters

If want to optimize NMS parameters(IoU threshold and confidence threshold), there are two ways to optimize.

Why there are two ways?

  • There is an issue with YOLOv5 validation.
  • It's ok with training or validating but the validation results are little different.
  1. Optimize parameters with YOLOv5 validation.
  2. Optimize parameters with COCO validation (pycocotools).

1. Optimize parameters with YOLOv5 validation.

python3 val_optimizer.py --weights ${WEIGHT_PATH | WANDB_PATH} --data-cfg $DATA_CONFIG_PATH

2. Optimize parameters with COCO validation.

python3 val_optimizer.py --weights ${WEIGHT_PATH | WANDB_PATH} --data-cfg $DATA_CONFIG_PATH --run-json --json-path $JSON_FILE_PATH

The --json-path is optional.

Advanced usage

  • If you have baseline network, give --base-map50 and --base-time arguments which are used for objective function.
  • To avoid the optimized parameters overfits, use --n-skip option to skip some images.
Applying SWA(Stochastic Weight Averaging)

There are three steps to apply SWA (Stochastic Weight Averaging):

  1. Fine-tune pre-trained model
  2. Create SWA model
  3. Test SWA model

1. Fine-tune pre-trained model

Example

$ python train.py --model yolov5l_kindle.pt \
                  --data res/configs/data/coco.yaml \
                  --cfg res/configs/cfg/finetune.yaml \
                  --wlog --wlog_name yolov5l_swa \
                  --use_swa

2. Create SWA model

Example

$ python create_swa_model.py --model_dir exp/train/2021_1104_runs/weights \
                             --swa_model_name swa_best5.pt \
                             --best_num 5

Usage

$ python create_swa_model.py --help
usage: create_swa_model.py [-h] --model_dir MODEL_DIR
                           [--swa_model_name SWA_MODEL_NAME]
                           [--best_num BEST_NUM]

optional arguments:
  -h, --help            show this help message and exit
  --model_dir MODEL_DIR
                        directory of trained models to apply SWA (default: )
  --swa_model_name SWA_MODEL_NAME
                        file name of SWA model (default: swa.pt)
  --best_num BEST_NUM   the number of trained models to apply SWA (default: 5)

3. Test SWA model

Example

$ python val.py --weights exp/train/2021_1104_runs/weights/swa_best5.pt \
                --model-cfg '' \
                --data-cfg res/configs/data/coco.yaml \
                --conf-t 0.1 --iou-t 0.2

References

Object Detection

[1] Ultralytics YOLOv5 - https://github.com/ultralytics/yolov5

[2] YOLOR implementation - https://github.com/WongKinYiu/yolor.git

[3] MobileViT implementation - https://github.com/chinhsuanwu/mobilevit-pytorch

[4] Kindle - Making a PyTorch model easier than ever! - https://github.com/JeiKeiLim/kindle

[5] Wang, Chien-Yao, I-Hau Yeh, and Hong-Yuan Mark Liao. "You Only Learn One Representation: Unified Network for Multiple Tasks." arXiv preprint arXiv:2105.04206 (2021).

[6] Mehta, Sachin, and Mohammad Rastegari. "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer." arXiv preprint arXiv:2110.02178 (2021).

[7] Ghiasi, Golnaz, et al. "Simple copy-paste is a strong data augmentation method for instance segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Stochastic Weight Averaging

[8] SWA Object Detection implementation - https://github.com/hyz-xmaster/swa_object_detection

[9] Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." arXiv preprint arXiv:1803.05407 (2018).

[10] Zhang, Haoyang, et al. "Swa object detection." arXiv preprint arXiv:2012.12645 (2020).

Knowledge Distillation

[11] Xu, Mengde, et al. "End-to-End Semi-Supervised Object Detection with Soft Teacher." arXiv preprint arXiv:2106.09018 (2021).

[12] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[13] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

[14] Grill, Jean-Bastien, et al. "Bootstrap your own latent: A new approach to self-supervised learning." arXiv preprint arXiv:2006.07733 (2020).

[15] Roh, Byungseok, et al. "Spatially consistent representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Tensor Decomposition and Pruning

[16] PyTorch tensor decompositions - https://github.com/jacobgil/pytorch-tensor-decompositions

[17] PyTorch pruning tutorial - https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Representation Learning

[18] Bengio, Yoshua et al. "Representation Learning: A Review and New Perspectives." IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013.

[19] Chen, Ting et al. "A Simple Framework for Contrastive Learning of Visual Representations." Proceedings of the 37th International Conference on Machine Learning. 2020

Non Maximum Suppression

[20] Batched NMS - https://github.com/ultralytics/yolov3/blob/f915bf175c02911a1f40fbd2de8494963d4e7914/utils/utils.py#L562-L563

[21] Fast NMS - https://github.com/ultralytics/yolov3/blob/77e6bdd3c1ea410b25c407fef1df1dab98f9c27b/utils/utils.py#L557-L559

[22] Matrix NMS - https://github.com/ultralytics/yolov3/issues/679#issuecomment-594132977

[23] Merge NMS - https://github.com/ultralytics/yolov5/blob/master/utils/general.py#L710-L722

[24] Cluster NMS - https://github.com/Zzh-tju/yolov5/blob/master/utils/general.py#L689-L774


Contributors

Thanks goes to these wonderful people (emoji key):


Jongkuk Lim

💻

Haneol Kim

💻

Hyungseok Shin

💻

Hyunwook Kim

💻

This project follows the all-contributors specification. Contributions of any kind are welcome!

Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022