Model-based Reinforcement Learning Improves Autonomous Racing Performance

Overview

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars

In this work, we propose to learn a racing controller directly from raw Lidar observations.

The resulting policy has been evaluated on F1tenth-like tracks and then transfered to real cars.

Racing Dreamer

The free version is available on arXiv.

If you find this code useful, please reference in your paper:

@misc{brunnbauer2021modelbased,
      title={Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars}, 
      author={Axel Brunnbauer and Luigi Berducci and Andreas Brandstätter and Mathias Lechner and Ramin Hasani and Daniela Rus and Radu Grosu},
      year={2021},
      eprint={2103.04909},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

This repository is organized as follows:

  • Folder dreamer contains the code related to the Dreamer agent.
  • Folder baselines contains the code related to the Model Free algorihtms (D4PG, MPO, PPO, LSTM-PPO, SAC).
  • Folder ros_agent contains the code related to the transfer on real racing cars.
  • Folder docs contains the track maps, mechanical and general documentation.

Dreamer

"Dreamer learns a world model that predicts ahead in a compact feature space. From imagined feature sequences, it learns a policy and state-value function. The value gradients are backpropagated through the multi-step predictions to efficiently learn a long-horizon policy."

This implementation extends the original implementation of Dreamer (Hafner et al. 2019).

We refer the reader to the Dreamer website for the details on the algorithm.

Dreamer

Instructions

This code has been tested on Ubuntu 18.04 with Python 3.7.

Get dependencies:

pip install --user -r requirements.txt

Training

We train Dreamer on LiDAR observations and propose two Reconstruction variants: LiDAR and Occupancy Map.

Reconstruction Variants

Train the agent with LiDAR reconstruction:

python dreamer/dream.py --track columbia --obs_type lidar

Train the agent with Occupancy Map reconstruction:

python dream.py --track columbia --obs_type lidar_occupancy

Please, refer to dream.py for the other command-line arguments.

Offline Evaluation

The evaluation module runs offline testing of a trained agent (Dreamer, D4PG, MPO, PPO, SAC).

To run evaluation, assuming to have the dreamer directory in the PYTHONPATH:

python evaluations/run_evaluation.py --agent dreamer \
                                     --trained_on austria \
                                     --obs_type lidar \
                                     --checkpoint_dir logs/checkpoints \
                                     --outdir logs/evaluations \
                                     --eval_episodes 10 \
                                     --tracks columbia barcelona 

The script will look for all the checkpoints with pattern logs/checkpoints/austria_dreamer_lidar_* The checkpoint format depends on the saving procedure (pkl, zip or directory).

The results are stored as tensorflow logs.

Plotting

The plotting module containes several scripts to visualize the results, usually aggregated over multiple experiments.

To plot the learning curves:

python plotting/plot_training_curves.py --indir logs/experiments \
                                                --outdir plots/learning_curves \
                                                --methods dreamer mpo \
                                                --tracks austria columbia treitlstrasse_v2 \
                                                --legend

It will produce the comparison between Dreamer and MPO on the tracks Austria, Columbia, Treitlstrasse_v2.

To plot the evaluation results:

python plotting/plot_test_evaluation.py --indir logs/evaluations \
                                                --outdir plots/evaluation_charts \
                                                --methods dreamer mpo \
                                                --vis_tracks austria columbia treitlstrasse_v2 \
                                                --legend

It will produce the bar charts comparing Dreamer and MPO evaluated in Austria, Columbia, Treitlstrasse_v2.

Instructions with Docker

We also provide an docker image based on tensorflow:2.3.1-gpu. You need nvidia-docker to run them, see here for more details.

To build the image:

docker build -t dreamer .

To train Dreamer within the container:

docker run -u $(id -u):$(id -g) -v $(pwd):/src --gpus all --rm dreamer python dream.py --track columbia --steps 1000000

Model Free

The organization of Model-Free codebase is similar and we invite the users to refer to the README for the detailed instructions.

Hardware

The codebase for the implementation on real cars is contained in ros_agent.

Additional material:

  • Folder docs/maps contains a collection of several tracks to be used in F1Tenth races.
  • Folder docs/mechanical contains support material for real world race-tracks.
Owner
Cyber Physical Systems - TU Wien
Cyber Physical Systems - TU Wien
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022