SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Overview

CORNELLSASLAB

SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Instructions:

This python code can be used to convert SAS outputs from the lang and ac lab into data tables for regression and factorial summaries. SAS formst varies by run, therefore you may have to do a little editing before the code works.

For example, a working data chunk for this program would look something like this:

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     1   8          1      1     -0.4167    0.1251   1544    -3.33    0.0009
1         2     1   8          1      2     -0.2917    0.1251   1544    -2.33    0.0199
1         2     2   7          2      3     -0.4375    0.1363   1544    -3.21    0.0014
1         2     2   8          1      1     -0.4583    0.1251   1544    -3.66    0.0003

The SAS System 15:01 Sunday, August 4, 2019 139

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     2   8          1      2     -0.3333    0.1251   1544    -2.66    0.0078
1         2     2   8          1      3     -0.5625    0.1251   1544    -4.50    <.0001
1         2     2   8          2      1     -0.5833    0.1363   1544    -4.28    <.0001
1         2     3   7          2      3     -0.4167    0.1363   1544    -3.06    0.0023
1         2     3   8          1      1     -0.4375    0.1251   1544    -3.50    0.0005
1         2     3   8          1      2     -0.3125    0.1251   1544    -2.50    0.0126
1         2     3   8          1      3     -0.5417    0.1251   1544    -4.33    <.0001

The SAS System 15:01 Sunday, August 4, 2019 140

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     3   8          2      1     -0.5625    0.1363   1544    -4.13    <.0001
1         2     3   8          2      2     -0.5208    0.1363   1544    -3.82    0.0001
1         2     3   8          2      3     -0.4583    0.1363   1544    -3.36    0.0008
2         1     1   2          1      2    6.66E-16   0.07654   1544     0.00    1.0000
2         1     1   2          1      3    -0.08333   0.07654   1544    -1.09    0.2764
2         1     1   8          2      1     -0.4583    0.1251   1544    -3.66    0.0003
2         1     1   8          2      2     -0.4167    0.1251   1544    -3.33    0.0009
2         1     1   8          2      3     -0.3542    0.1251   1544    -2.83    0.0047

The SAS System 15:01 Sunday, August 4, 2019 141

As you can see, every chunk starts with the same title, and ends with a date and page number in the bottom right corner. All of the chunks have the same format and same number of columns. If the format of the pasted chunks is wrong, the code likely won't work.

NOTE: when pasting the file path to your excel document, make sure excel is not running on your computer, or else there will be an error.

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023