Python implementation of "Elliptic Fourier Features of a Closed Contour"

Overview

PyEFD

Build and Test Documentation Status image image image

An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1].

Installation

pip install pyefd

Usage

Given a closed contour of a shape, generated by e.g. scikit-image or OpenCV, this package can fit a Fourier series approximating the shape of the contour.

General usage examples

This section describes the general usage patterns of pyefd.

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10)

The coefficients returned are the a_n, b_n, c_n and d_n of the following Fourier series representation of the shape.

The coefficients returned are by default normalized so that they are rotation and size-invariant. This can be overridden by calling:

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=False)

Normalization can also be done afterwards:

from pyefd import normalize_efd
coeffs = normalize_efd(coeffs)

OpenCV example

If you are using OpenCV to generate contours, this example shows how to connect it to pyefd.

import cv2 
import numpy
from pyefd import elliptic_fourier_descriptors

# Find the contours of a binary image using OpenCV.
contours, hierarchy = cv2.findContours(
    im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# Iterate through all contours found and store each contour's 
# elliptical Fourier descriptor's coefficients.
coeffs = []
for cnt in contours:
    # Find the coefficients of all contours
    coeffs.append(elliptic_fourier_descriptors(
        numpy.squeeze(cnt), order=10))

Using EFD as features

To use these as features, one can write a small wrapper function:

from pyefd import elliptic_fourier_descriptors

def efd_feature(contour):
    coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
    return coeffs.flatten()[3:]

If the coefficients are normalized, then coeffs[0, 0] = 1.0, coeffs[0, 1] = 0.0 and coeffs[0, 2] = 0.0, so they can be disregarded when using the elliptic Fourier descriptors as features.

See [1] for more technical details.

Testing

Run tests with with Pytest:

py.test tests.py

The tests include a single image from the MNIST dataset of handwritten digits ([2]) as a contour to use for testing.

Documentation

See ReadTheDocs.

References

[1]: Frank P Kuhl, Charles R Giardina, Elliptic Fourier features of a closed contour, Computer Graphics and Image Processing, Volume 18, Issue 3, 1982, Pages 236-258, ISSN 0146-664X, http://dx.doi.org/10.1016/0146-664X(82)90034-X.

[2]: LeCun et al. (1999): The MNIST Dataset Of Handwritten Digits

Comments
  • Vectorized contour reconstruction function

    Vectorized contour reconstruction function

    Hope to contribute some more to this project with an extracted contour reconstruction function. Refactored tests accordingly. To compare reconstructed shapes I had to import a reliable hausdorff distance function, for which the scipy package was included in the test requirements.

    opened by reinvantveer 4
  • fix x/y swapping and add demo

    fix x/y swapping and add demo

    Hi,

    I noticed that in some places apparently the x/y dimension was mixed up and I attempted to fix this. As a test and demo, I added a few geometric figures to showcase this method.

    Best regards, Jonathan

    enhancement 
    opened by jonathanschilling 3
  • Method not robust to random index ?

    Method not robust to random index ?

    Hello,

    I wanted to test your method, I do not really know how does it works but it seems that how the point are indexed have some importance as I get strange result when the array is indexed differently ... Is there a way to resolve this ?

    Find below illustration of what I mean

    normal result when points are correctly ordered image

    abnormal result when points are randomly ordered image

    opened by julienguegan 3
  • Bad reconstruction results

    Bad reconstruction results

    Hi, now I'm writing the code that reconstructs the image from eft coefficienct @hbldh

    img_1 = np.array(
        [
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                64,
                64,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                127,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                64,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                191,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
        ]
    )
    
    img_1 = np.uint8(img_1)
    edges = cv2.Canny(img_1,100,200)
    contour_2 = []
    
    for i in range(edges.shape[0]):
        for j in range(edges.shape[1]):
            if edges[i,j] == 255:
              contour_2.append([i,j])
    contour_2 = np.array(contour_2)
    
    cv2.imwrite('test1.png',img_1)
    
    coeffs = pyefd.elliptic_fourier_descriptors(contour_2, order=10, normalize=False)
    
    contour_2 = pyefd.reconstruct_contour(coeffs, locus=(0, 0), num_points=300)
    
    for i in range(contour_1.shape[0]):
        tmp[int(round(contour_1[i][0]))][int(round(contour_1[i][1]))] = 255
    print(tmp.shape)
    cv2.imwrite('test2.png',tmp)
    

    However, the result is not the supposed one. How can I fix my code to reconstruct the correct image?

    test1, reconstruction of img_1(test1.png) test2, reconstruction of edge test3, reconstruction from coeffs, (test2.png)

    opened by MADONOKOUKI 2
  • Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Hi, I am sending my contour sequence to your function to define properties using the opencv example in your readme file, but I get the following error. What is the reason?

    My code:

    import cv2 
    import numpy as np
    from pyefd import elliptic_fourier_descriptors
    
    def auto_canny(image, sigma=0.33):
    	# compute the median of the single channel pixel intensities
    	v = np.median(image)
    	# apply automatic Canny edge detection using the computed median
    	lower = int(max(0, (1.0 - sigma) * v))
    	upper = int(min(255, (1.0 + sigma) * v))
    	edged = cv2.Canny(image, lower, upper)
    	# return the edged image
    	return edged
    def efd_feature(contour):
        coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
        return coeffs.flatten()[3:]
    img = cv2.imread('C:/Users/Ogeday/image.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    retval,th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +cv2.THRESH_OTSU)
    cv2.imshow("thresolded",th);
    
    canny=auto_canny(th);
    
    cv2.imshow("cannied",canny);
    # Find the contours of a binary image using OpenCV.
    contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Iterate through all contours found and store each contour's 
    # elliptical Fourier descriptor's coefficients.
    coeffs = []
    for cnt in contours:
        # Find the coefficients of all contours
     coeffs.append(elliptic_fourier_descriptors(np.squeeze(cnt), order=10))
    
    efd=efd_feature(contours);
    print(efd);
    
    opened by OgedayOztekin 2
  • pyefd for 3D points

    pyefd for 3D points

    Hi!

    I wondered if I could use pyefd for generating the contour from 3D data points, where x, y, and z are the coordinates of a generic point. Do you have any suggestions?

    I really appreciate any help you can provide!

    opened by dalbenzioG 1
  • Feature request: normalize_efd function that also outputs angle and scale

    Feature request: normalize_efd function that also outputs angle and scale

    Thank you very much for this beautiful piece of software. For my purposes it would be great to also get the normalization angle and scale in order to store it alongside the descriptor for future lookups. Would it be possible to have a analogous function to normalize_efd that outputs those values and the normalized descriptor as a tuple?

    enhancement 
    opened by geloescht 1
  • Release/v1.5.0

    Release/v1.5.0

    Version 1.5.0

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.
    opened by hbldh 0
  • Create Dependabot config file

    Create Dependabot config file

    :wave: Dependabot is moving natively into GitHub! This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When you merge this pull request, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates. Dependabot is now configured exclusively using config files.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about the relaunch of Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    :robot::yellow_heart:

    dependencies 
    opened by dependabot-preview[bot] 0
  • Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/.

    You can provide authentication details in your Dependabot dashboard by clicking into the account menu (in the top right) and selecting 'Config variables'.

    View the update logs.

    opened by dependabot-preview[bot] 0
  • Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files.

    As a result, Dependabot couldn't update your dependencies.

    The error Dependabot encountered was:

    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    [pipenv.exceptions.ResolutionFailure]:       req_dir=requirements_dir
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 726, in resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       req_dir=req_dir,
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 480, in actually_resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       resolved_tree = resolver.resolve()
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 395, in resolve
    [pipenv.exceptions.ResolutionFailure]:       raise ResolutionFailure(message=str(e))
    [pipenv.exceptions.ResolutionFailure]:       pipenv.exceptions.ResolutionFailure: ERROR: ERROR: Could not find a version that matches black
    [pipenv.exceptions.ResolutionFailure]:       Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    [pipenv.exceptions.ResolutionFailure]: Warning: Your dependencies could not be resolved. You likely have a mismatch in your sub-dependencies.
      First try clearing your dependency cache with $ pipenv lock --clear, then try the original command again.
     Alternatively, you can use $ pipenv install --skip-lock to bypass this mechanism, then run $ pipenv graph to inspect the situation.
      Hint: try $ pipenv lock --pre if it is a pre-release dependency.
    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    
    ['Traceback (most recent call last):\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 501, in create_spinner\n    yield sp\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 649, in venv_resolve_deps\n    c = resolve(cmd, sp)\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 539, in resolve\n    sys.exit(c.return_code)\n', 'SystemExit: 1\n']
    

    If you think the above is an error on Dependabot's side please don't hesitate to get in touch - we'll do whatever we can to fix it.

    You can mention @dependabot in the comments below to contact the Dependabot team.

    opened by dependabot-preview[bot] 0
  • Contour chain approximation

    Contour chain approximation "simple" is buggy or numerically instable

    Description

    I was running Fourier descriptors extraction on contours that naturally contain long straight lines. I used cv.CHAIN_APPROX_SIMPLE as usual but was having weird results as if the method does not converge:

    image

    I tried storing the contour as cv.CHAIN_APPROX_NONE instead and it fixed the problem for all of my cases: image

    Minimal setup to reproduce:

    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,255,255), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    
    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,0,0), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    

    I get: image image

    opened by MikeTkachuk 0
  • RuntimeWarning: invalid value encountered in true_divide

    RuntimeWarning: invalid value encountered in true_divide

    Some specific contour leads to a warning and to NaN due to division by 0.

    from pyefd import elliptic_fourier_descriptors
    import numpy as np
    
    contour = np.array([(0.0007365261134166801, 0.0008592751780890362), (0.0011385481809349507, 0.0005073326831297464), (0.0016015060818268534, 0.00024058327913523136), (0.002107608603590938, 6.927799610623175e-05), (0.002637406510141327, 0.0), (0.003170539965043462, 3.5411605355473164e-05), (0.0036865209486098838, 0.00017415196403836042), (0.0036865209486098838, 0.00017415196403836042), (0.003301593851628093, 0.0011941724608851567), (0.003301593851628093, 0.0011941724608851567), (0.0029920052614881287, 0.001110928245675824), (0.002672125188546981, 0.0010896812824625624), (0.002354246444616681, 0.0011312480801257685), (0.002050584931558297, 0.0012340312499438122), (0.0017728101910231553, 0.001394080892339833), (0.001531596950512193, 0.0016052463893156954), (0.0013362148995842427, 0.001859412769243729), (0.0011941724608850457, 0.0021468125606828314), (0.001110928245675491, 0.0024564011508226846), (0.0010896812824621183, 0.0027762812237640544), (0.0011312480801258795, 0.003094159967693799), (0.001234031249943368, 0.0033978214807524054), (0.001394080892340055, 0.003675596221287547), (0.0016052463893154734, 0.003916809461798509), (0.00185941276924384, 0.004112191512726571), (0.0021468125606826094, 0.004254233951425768), (0.0017618854637007075, 0.005274254448272675), (0.0012828858113027586, 0.005037517050440643), (0.0008592751780888142, 0.0047118802988938), (0.0005073326831298575, 0.004309858231375752), (0.0002405832791353424, 0.003846900330483627), (6.927799610623175e-05, 0.0033407978087195422), (0.0, 0.0028109999021695975), (3.5411605355584186e-05, 0.0022778664472672405), (0.0001741519640382494, 0.0017618854637008186), (0.00041088936187017033, 0.0012828858113032027), (0.0007365261134166801, 0.0008592751780890362)])
    y = elliptic_fourier_descriptors(contour, order=3, normalize=False)
    print(y)
    

    will give the following output :

    [[nan nan nan nan] [nan nan nan nan] [nan nan nan nan]] /usr/local/lib/python3.7/dist-packages/pyefd.py:67: RuntimeWarning: invalid value encountered in true_divide a = consts * np.sum((dxy[:, 0] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:68: RuntimeWarning: invalid value encountered in true_divide b = consts * np.sum((dxy[:, 0] / dt) * d_sin_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:69: RuntimeWarning: invalid value encountered in true_divide c = consts * np.sum((dxy[:, 1] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:70: RuntimeWarning: invalid value encountered in true_divide d = consts * np.sum((dxy[:, 1] / dt) * d_sin_phi, axis=1)


    Any idea how to fix this ?

    Or how to work-around this ?

    opened by ghost 3
  • Descriptors not consistent across cycled contour indices

    Descriptors not consistent across cycled contour indices

    Description

    I am trying to create invariant descriptors for the same silhouettes at different rotation angles.

    What I Did

    Created rotated copies of the same picture. Ran skimage.measure.find_contours() on it to extract a contour and pyefd.elliptic_fourier_descriptors(normalize=True) on the result. Expected output: Equal with some margin of error for differently rotated copies. Actual output: Result is only sometimes equal.

    Unfortunately my code is spread over several source files and depends on data, so I cannot easily share an example of what I am actually doing. But here is a function that, when inserted into tests.py will result in a failed test:

    def test_normalizing_4():
        contour_2 = np.roll(contour_1[:-1,:], 40, axis=0)
        contour_2 = np.append(contour_2, [contour_2[0]], axis=0)
        c1 = pyefd.elliptic_fourier_descriptors(contour_1, normalize=True)
        c2 = pyefd.elliptic_fourier_descriptors(contour_2, normalize=True)
        np.testing.assert_almost_equal(c1, c2, decimal=12)
    

    The reason for this behaviour is actually mentioned in the original paper in chapter 5.1 and figure 8: For every shape there are two possible classifications, each rotated along one of the two semi-major axes (rotated 180 degrees from each other). It seems like pyefd chooses one of them based on the location of the first point in the contour.

    There might be two solutions to this, firstly to return both classifications or to choose one of them (more) consistently by examining higher harmonic content of the descriptor. Note that the (near-)circular case also exists as outlined in the paper in chapter 5.2, so returning multiple descriptors and normalisation parametres might be required anyway for contours with rotational symmetry.

    bug enhancement help wanted 
    opened by geloescht 2
Releases(v1.6.0)
  • v1.6.0(Dec 9, 2021)

    Version 1.6.0 (2021-12-09)

    Added

    • Added a demo for 3D surfaces with cylindrical symmetries. (examples/example1.py)

    Fixes

    • Fixes incorrectly plotted curves when no imshow has been called.
    • Fixes ugly coefficient calculation code.
    Source code(tar.gz)
    Source code(zip)
  • v1.5.1(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v.1.5.1-2(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.1(Sep 28, 2020)

  • v0.1.0(Feb 9, 2016)

Owner
Henrik Blidh
Mathematician, Python programmer and Pointless Projecteer.
Henrik Blidh
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022