competitions-v2

Overview

Codabench

(formerly Codalab Competitions v2)

Installation

$ cp .env_sample .env
$ docker-compose up -d
$ docker-compose exec django ./manage.py migrate
$ docker-compose exec django ./manage.py generate_data
$ docker-compose exec django ./manage.py collectstatic --noinput

You can now login as username "admin" with password "admin" at http://localhost:8000

If you ever need to reset the database, use the script ./reset_db.sh

Running tests

# Non "end to end tests"
$ docker-compose exec django py.test -m "not e2e"

# "End to end tests" (a shell script to launch a selenium docker container)
$ ./run_selenium_tests.sh

# If you are on Mac OSX it is easy to watch these tests, no need to install
# anything just do:
$ open vnc://0.0.0.0:5900

# And login with password "secret"

Example competitions

The repo comes with a couple examples that are used during tests:

v2 test data

src/tests/functional/test_files/submission.zip
src/tests/functional/test_files/competition.zip

v1.5 legacy test data

src/tests/functional/test_files/submission15.zip
src/tests/functional/test_files/competition15.zip

Other Codalab Competition examples

https://github.com/codalab/competition-examples/tree/master/v2/

Building compute worker

To build the normal image:

docker build -t codalab/competitions-v2-compute-worker:latest -f Dockerfile.compute_worker .

To build the GPU version:

docker build -t codalab/competitions-v2-compute-worker:nvidia -f Dockerfile.compute_worker_gpu .

Updating the image

docker push codalab/competitions-v2-compute-worker

Worker setup

# install docker
$ curl https://get.docker.com | sudo sh
$ sudo usermod -aG docker $USER

# >>> reconnect <<<

Start CPU worker

Make a file .env and put this in it:

# Queue URL
BROKER_URL=
   
    

# Location to store submissions/cache -- absolute path!
HOST_DIRECTORY=/your/path/to/codabench/storage

# If SSL is enabled, then uncomment the following line
#BROKER_USE_SSL=True

   

NOTE /your/path/to/codabench -- this path needs to be volumed into /codabench on the worker, as you can see below.

$ docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:latest 

Start GPU worker

nvidia installation instructions

$ nvidia-docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v /var/lib/nvidia-docker/nvidia-docker.sock:/var/lib/nvidia-docker/nvidia-docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:nvidia 

Worker management

Outside of docker containers install Fabric like so:

pip install fab-classic==1.17.0

Create a server_config.yaml in the root of this repository using:

cp server_config_sample.yaml server_config.yaml

Below is an example server_config.yaml that defines 2 roles comp-gpu and comp-cpu, one with gpu style workers (is_gpu and the nvidia docker_image) and one with cpu style workers

comp-gpu:
  hosts:
    - [email protected]
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-gpu
  is_gpu: true
  docker_image: codalab/competitions-v2-compute-worker:nvidia

comp-cpu:
  hosts:
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-cpu
  is_gpu: false
  docker_image: codalab/competitions-v2-compute-worker:latest

You can of course create your own docker_image and specify it here.

You can execute commands against a role:

❯ fab -R comp-gpu status
..
[[email protected]] out: CONTAINER ID        IMAGE                                           COMMAND                  CREATED             STATUS              PORTS               NAMES
[[email protected]] out: 1d318268bee1        codalab/competitions-v2-compute-worker:nvidia   "/bin/sh -c 'celery …"   2 hours ago         Up 2 hours                              hardcore_greider
..

❯ fab -R comp-gpu update
..
(updates workers)

See available commands with fab -l

Owner
CodaLab
CodaLab
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022