Contains code for Deep Kernelized Dense Geometric Matching

Related tags

Deep LearningDKM
Overview

DKM - Deep Kernelized Dense Geometric Matching

Contains code for Deep Kernelized Dense Geometric Matching

We provide pretrained models and code for evaluation and running on your own images. We do not curently provide code for training models, but you can basically copy paste the model code into your own training framework and run it.

Note that the performance of current models is greater than in the pre-print. This is due to continued development since submission.

Install

Run pip install -e .

Using a (Pretrained) Model

Models can be imported by:

from dkm import dkm_base
model = dkm_base(pretrained=True, version="v11")

This creates a model, and loads pretrained weights.

Running on your own images

from dkm import dkm_base
from PIL import Image
model = dkm_base(pretrained=True, version="v11")
im1, im2 = Image.open("im1.jpg"), Image.open("im2.jpg")
# Note that matches are produced in the normalized grid [-1, 1] x [-1, 1] 
dense_matches, dense_certainty = model.match(im1, im2)
# You may want to process these, e.g. we found dense_certainty = dense_certainty.sqrt() to work quite well in some cases.
# Sample 10000 sparse matches
sparse_matches, sparse_certainty = model.sample(dense_matches, dense_certainty, 10000)

Downloading Benchmarks

HPatches

First, make sure that the "data/hpatches" path exists. I usually prefer to do this by:

ln -s place/where/your/datasets/are/stored/hpatches data/hpatches

Then run (if you don't already have hpatches downloaded) bash scripts/download_hpatches.sh

Yfcc100m (OANet Split)

We use the split introduced by OANet, this split can be found from e.g. https://github.com/PruneTruong/DenseMatching

Megadepth (LoFTR Split)

Currently we do not support the LoFTR split, as we trained on one of the scenes used there. Future releases may support this split, stay tuned.

Scannet (SuperGlue Split)

We use the same split of scannet as superglue. LoFTR provides the split here: https://drive.google.com/drive/folders/1nTkK1485FuwqA0DbZrK2Cl0WnXadUZdc

Evaluation

Here we provide approximate performance numbers for DKM using this codebase. Note that the randomness involved in geometry estimation means that the numbers are not exact. (+- 0.5 typically)

HPatches

To evaluate on HPatches Homography Estimation, run:

from dkm import dkm_base
from dkm.benchmarks import HpatchesHomogBenchmark

model = dkm_base(pretrained=True, version="v11")
homog_benchmark = HpatchesHomogBenchmark("data/hpatches")
homog_benchmark.benchmark_hpatches(model)

Results

HPatches Homography Estimation

AUC
@3px @5px @10px
LoFTR (CVPR'21) 65.9 75.6 84.6
DKM (Ours) 71.2 80.6 88.7

Scannet Pose Estimation

Here we compare the performance on Scannet of models not trained on Scannet. (For reference we also include the version LoFTR specifically trained on Scannet)

AUC mAP
@5 @10 @20 @5 @10 @20
SuperGlue (CVPR'20) Trained on Megadepth 16.16 33.81 51.84 - - -
LoFTR (CVPR'21) Trained on Megadepth 16.88 33.62 50.62 - - -
LoFTR (CVPR'21) Trained on Scannet 22.06 40.8 57.62 - - -
PDCNet (CVPR'21) Trained on Megadepth 17.70 35.02 51.75 39.93 50.17 60.87
PDCNet+ (Arxiv) Trained on Megadepth 19.02 36.90 54.25 42.93 53.13 63.95
DKM (Ours) Trained on Megadepth 22.3 42.0 60.2 48.4 59.5 70.3
DKM (Ours) Trained on Megadepth Square root Confidence Sampling 22.9 43.6 61.4 51.2 62.1 72.0

Yfcc100m Pose Estimation

Here we compare to recent methods using a single forward pass. PDC-Net+ using multiple passes comes closer to our method, reaching AUC-5 of 37.51. However, comparing to that method is somewhat unfair as their inference is much slower.

AUC mAP
@5 @10 @20 @5 @10 @20
PDCNet (CVPR'21) 32.21 52.61 70.13 60.52 70.91 80.30
PDCNet+ (Arxiv) 34.76 55.37 72.55 63.93 73.81 82.74
DKM (Ours) 40.0 60.2 76.2 69.8 78.5 86.1

TODO

  • Add Model Code
  • Upload Pretrained Models
  • Add HPatches Homography Benchmark
  • Add More Benchmarks

Acknowledgement

We have used code and been inspired by (among others) https://github.com/PruneTruong/DenseMatching , https://github.com/zju3dv/LoFTR , and https://github.com/GrumpyZhou/patch2pix

BibTeX

If you find our models useful, please consider citing our paper!

@article{edstedt2022deep,
  title={Deep Kernelized Dense Geometric Matching},
  author={Edstedt, Johan and Wadenb{\"a}ck, M{\aa}rten and Felsberg, Michael},
  journal={arXiv preprint arXiv:2202.00667},
  year={2022}
}
Owner
Johan Edstedt
PhD Student at CVL LiU.
Johan Edstedt
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023