Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

Overview

DNA

This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation.

Illustration of DNA. Each cell of the supernet is trained independently to mimic the behavior of the corresponding teacher block.

Comparison of model ranking for DNA vs. DARTS, SPOS and MnasNet under two different hyper-parameters.

Our Trained Models

Usage

1. Requirements

2. Searching

The code for supernet training, evaluation and searching is under searching directory.

  • cd searching

i) Train & evaluate the block-wise supernet with knowledge distillation

  • Modify datadir in initialize/data.yaml to your ImageNet path.
  • Modify nproc_per_node in dist_train.sh to suit your GPU number. The default batch size is 64 for 8 GPUs, you can change batch size and learning rate in initialize/train_pipeline.yaml
  • By default, the supernet will be trained sequentially from stage 1 to stage 6 and evaluate after each stage. This will take about 2 days on 8 GPUs with EfficientNet B7 being the teacher. Resuming from checkpoints is supported. You can also change start_stage in initialize/train_pipeline.yaml to force start from a intermediate stage without loading checkpoint.
  • sh dist_train.sh

ii) Search for the best architecture under constraint.

Our traversal search can handle a search space with 6 ops in each layer, 6 layers in each stage, 6 stages in total. A search process like this should finish in half an hour with a single cpu. To perform search over a larger search space, you can manually divide the search space or use other search algorithms such as Evolution Algorithms to process our evaluated architecture potential files.

  • Copy the path of architecture potential files generated in step i) to potential_yaml in process_potential.py. Modify the constraint in process_potential.py.
  • python process_potential.py

3. Retraining

The retraining code is simplified from the repo: pytorch-image-models and is under retraining directory.

  • cd retraining

  • Retrain our models or your searched models

    • Modify the run_example.sh: change data path and hyper-params according to your requirements
    • Add your searched model architecture to model.py. You can also use our searched and predefined DNA models.
    • sh run_example.sh
  • You can evaluate our models with the following command:
    python validate.py PATH/TO/ImageNet/validation --model DNA_a --checkpoint PATH/TO/model.pth.tar

    • PATH/TO/ImageNet/validation should be replaced by your validation data path.
    • --model : DNA_a can be replaced by DNA_b, DNA_c, DNA_d for our different models.
    • --checkpoint : Suggest the path of your downloaded checkpoint here.
Owner
Changlin Li
Changlin Li
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Ian Covert 130 Jan 01, 2023
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023