[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Overview

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Accepted as a spotlight paper at ICLR 2021.

Table of content

File structure

.
├── hw_nas_bench_api # HW-NAS-Bench API
│   ├── fbnet_models # FBNet's space
│   └── nas_201_models # NAS-Bench-201's space
│       ├── cell_infers
│       ├── cell_searchs
│       ├── config_utils
│       ├── shape_infers
│       └── shape_searchs
└── nas_201_api # NAS-Bench-201 API

Prerequisites

The code has the following dependencies:

  • python >= 3.6.10
  • pytorch >= 1.2.0
  • numpy >= 1.18.5

Preparation and download

No addtional file needs to be downloaded, our HW-NAS-Bench dataset has been included in this repository.

[Optional] If you want to use NAS-Bench-201 to access information about the architectures' accuracy and loss, please follow the NAS-Bench-201 guide, and download the NAS-Bench-201-v1_1-096897.pth.

How to use HW-NAS-Bench

More usage can be found in our jupyter notebook example

  1. Create an API instance from a file:
from hw_nas_bench_api import HWNASBenchAPI as HWAPI
hw_api = HWAPI("HW-NAS-Bench-v1_0.pickle", search_space="nasbench201")
  1. Show the real measured/estimated hardware-cost in different datasets:
# Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
for idx in range(3):
    for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
        HW_metrics = hw_api.query_by_index(idx, dataset)
        print("The HW_metrics (type: {}) for No.{} @ {} under NAS-Bench-201: {}".format(type(HW_metrics),

Corresponding printed information:

===> Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
The HW_metrics (type: <class 'dict'>) for No.0 @ cifar10 under NAS-Bench-201: {'edgegpu_latency': 5.807418537139893, 'edgegpu_energy': 24.226614330768584, 'raspi4_latency': 10.481976820010459, 'edgetpu_latency': 0.9571811309997429, 'pixel3_latency': 3.6058499999999998, 'eyeriss_latency': 3.645620000000001, 'eyeriss_energy': 0.6872827644999999, 'fpga_latency': 2.57296, 'fpga_energy': 18.01072}
...
  1. Show the real measured/estimated hardware-cost for a single architecture:
# Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
print("===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space")
HW_metrics = hw_api.query_by_index(0, "cifar10")
for k in HW_metrics:
    if "latency" in k:
        unit = "ms"
    else:
        unit = "mJ"
    print("{}: {} ({})".format(k, HW_metrics[k], unit))

Corresponding printed information:

===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
edgegpu_latency: 5.807418537139893 (ms)
edgegpu_energy: 24.226614330768584 (mJ)
raspi4_latency: 10.481976820010459 (ms)
edgetpu_latency: 0.9571811309997429 (ms)
pixel3_latency: 3.6058499999999998 (ms)
eyeriss_latency: 3.645620000000001 (ms)
eyeriss_energy: 0.6872827644999999 (mJ)
fpga_latency: 2.57296 (ms)
fpga_energy: 18.01072 (mJ)
  1. Create the network from api:
# Create the network
config = hw_api.get_net_config(0, "cifar10")
print(config)
from hw_nas_bench_api.nas_201_models import get_cell_based_tiny_net
network = get_cell_based_tiny_net(config) # create the network from configurration
print(network) # show the structure of this architecture

Corresponding printed information:

{'name': 'infer.tiny', 'C': 16, 'N': 5, 'arch_str': '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'num_classes': 10}
TinyNetwork(
  TinyNetwork(C=16, N=5, L=17)
  (stem): Sequential(
    (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (cells): ModuleList(
    (0): InferCell(
      info :: nodes=4, inC=16, outC=16, [1<-(I0-L0) | 2<-(I0-L1,I1-L2) | 3<-(I0-L3,I1-L4,I2-L5)], |avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|
      (layers): ModuleList(
        (0): POOLING(
          (op): AvgPool2d(kernel_size=3, stride=1, padding=1)
        )
        (1): ReLUConvBN(
...

Misc

Part of the devices used in HW-NAS-Bench:

Part of the devices used in HW-NAS-Bench

Acknowledgment

Owner
Efficient and Intelligent Computing Lab
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022