Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Overview

Clothes Parsing

Overview

This code provides an implementation of the research paper:

  A High Performance CRF Model for Clothes Parsing
  Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun
  Asian Conference on Computer Vision (ACCV), 2014

The code here allows training and testing of a model that got state-of-the-art results on the Fashionista dataset at the time of publication.

License

  Copyright (C) <2014> <Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun>

  This work is licensed under the Creative Commons
  Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy
  of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or
  send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

  Edgar Simo-Serra, Institut de Robotica i Informatica Industrial (CSIC/UPC), December 2014.
  [email protected], http://www-iri.upc.es/people/esimo/

Installation

In order to get started first checkout out the source code and then extract the features:

# Check out the git and cd into it as working directory
git clone https://github.com/bobbens/clothes_parsing.git
cd clothes_parsing
# Get and unpack the necessary features
wget http://hi.cs.waseda.ac.jp/~esimo//data/poseseg.tar.bz2
tar xvjf poseseg.tar.bz2 

The dSP dependency must also be compiled. This can be done by:

cd lib/dSP_5.1
make # First edit the Makefile if necessary

Usage

You can reproduce results simply by running from Matlab:

sm = segmodel( 'PROFILE', '0.16', 'use_real_pose', false ); % Load the model, parameters can be set here
sm = sm.train_misc_unaries(); % Trains some misc stuff
sm = sm.train_MRF(); % Actually sets up and trains the CRF
R = sm.test_MRF_segmentation() % Performs testing and outputs results

This should generate an output like:

 BUILDING MRF OUTPUT 29 CLASSES (REAL POSE=0)...
 UNARIES:
    bgbias
    logreg:       29
    cpmc_logreg:  29
    cpmc
    shapelets
 HIGHER ORDER
    similarity
    limbs
 Initializing Image 011 / 350...   0.4 seconds!   

 ...

 Tested MRF in 319.0 seconds
 350 / 350... 

 R = 

     confusion: [29x29 double]
     order: [29x1 double]
     acc: 0.8432
     pre: [29x1 double]
     rec: [29x1 double]
     f1: [29x1 double]
     voc: [29x1 double]
     avr_pre: 0.3007
     avr_rec: 0.3292
     avr_f1: 0.3039
     avr_voc: 0.2013

Please note that due to stochastic components and differences between software versions, the numbers will not be exactly the same as the paper. For the paper all results were obtained on a linux machine running Ubuntu 12.04 with Matlab R2012a (7.14.0.739) 64-bit (glnxa64).

You can furthermore visualize the output of the model with:

sm.test_MRF_visualize( 'output/' )

This will save both the ground truth segmentations and the predicted segmentations in the directory 'output/' as shown in the paper.

If you use this code please cite:

 @InProceedings{SimoSerraACCV2014,
    author = {Edgar Simo-Serra and Sanja Fidler and Francesc Moreno-Noguer and Raquel Urtasun},
    title = {{A High Performance CRF Model for Clothes Parsing}},
    booktitle = "Proceedings of the Asian Conference on Computer Vision (2014)",
    year = 2014
 }

Acknowledgments

We would like to give our thanks to Kota Yamaguchi for his excellent code which we have used as a base for our model.

The different codes we have used (in alphabetical order):

Changelog

December 2014: Initial version 1.0 release

Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022