ETM - R package for Topic Modelling in Embedding Spaces

Related tags

Text Data & NLPlda
Overview

ETM - R package for Topic Modelling in Embedding Spaces

This repository contains an R package called topicmodels.etm which is an implementation of ETM

  • ETM is a generative topic model combining traditional topic models (LDA) with word embeddings (word2vec)
    • It models each word with a categorical distribution whose natural parameter is the inner product between a word embedding and an embedding of its assigned topic
    • The model is fitted using an amortized variational inference algorithm on top of libtorch (https://torch.mlverse.org)
  • The techniques are explained in detail in the paper: "Topic Modelling in Embedding Spaces" by Adji B. Dieng, Francisco J. R. Ruiz and David M. Blei, available at https://arxiv.org/pdf/1907.04907.pdf

Installation

This R package is not on CRAN (yet), for now, you can install it as follows

install.packages("torch")
install.packages("word2vec")
install.packages("doc2vec")
install.packages("udpipe")
install.packages("remotes")
library(torch)
remotes::install_github('bnosac/ETM', INSTALL_opts = '--no-multiarch')

Once the package has some plotting functionalities, I'll push it on CRAN.

Example

Build a topic model on questions answered in Belgian parliament in 2020 in Dutch.

a. Get data

  • Example text of +/- 6000 questions asked in the Belgian parliament (available in R package doc2vec).
  • Standardise the text a bit
library(torch)
library(topicmodels.etm)
library(doc2vec)
library(word2vec)
data(be_parliament_2020, package = "doc2vec")
x      <- data.frame(doc_id           = be_parliament_2020$doc_id, 
                     text             = be_parliament_2020$text_nl, 
                     stringsAsFactors = FALSE)
x$text <- txt_clean_word2vec(x$text)

b. Build a word2vec model to get word embeddings and inspect it a bit

w2v        <- word2vec(x = x$text, dim = 25, type = "skip-gram", iter = 10, min_count = 5, threads = 2)
embeddings <- as.matrix(w2v)
predict(w2v, newdata = c("migranten", "belastingen"), type = "nearest", top_n = 4)
$migranten
      term1               term2 similarity rank
1 migranten              lesbos  0.9434163    1
2 migranten               chios  0.9334459    2
3 migranten vluchtelingenkampen  0.9269973    3
4 migranten                kamp  0.9175452    4

$belastingen
        term1                term2 similarity rank
1 belastingen            belasting  0.9458982    1
2 belastingen          ontvangsten  0.9091899    2
3 belastingen              geheven  0.9071115    3
4 belastingen            ontduiken  0.9029559    4

c. Build the embedding topic model

  • Create a bag of words document term matrix (using the udpipe package but other R packages provide similar functionalities)
  • Keep only the top 50% terms with the highest TFIDF
  • Make sure document/term/matrix and the embedding matrix have the same vocabulary
library(udpipe)
dtm   <- strsplit.data.frame(x, group = "doc_id", term = "text", split = " ")
dtm   <- document_term_frequencies(dtm)
dtm   <- document_term_matrix(dtm)
dtm   <- dtm_remove_tfidf(dtm, prob = 0.50)

vocab        <- intersect(rownames(embeddings), colnames(dtm))
embeddings   <- dtm_conform(embeddings, rows = vocab)
dtm          <- dtm_conform(dtm,     columns = vocab)
dim(dtm)
dim(embeddings)
  • Learn 20 topics with a 100-dimensional hyperparameter for the variational inference
set.seed(1234)
torch_manual_seed(4321)
model     <- ETM(k = 20, dim = 100, embeddings = embeddings)
optimizer <- optim_adam(params = model$parameters, lr = 0.005, weight_decay = 0.0000012)
loss      <- model$fit(data = dtm, optimizer = optimizer, epoch = 20, batch_size = 1000)
plot(model, type = "loss")

d. Inspect the model

terminology  <- predict(model, type = "terms", top_n = 5)
terminology
[[1]]
              term       beta
3891 zelfstandigen 0.05245856
2543      opdeling 0.02827548
5469  werkloosheid 0.02366866
3611          ocmw 0.01772762
4957  zelfstandige 0.01139760

[[2]]
              term        beta
3891 zelfstandigen 0.032309771
5469  werkloosheid 0.021119611
4957  zelfstandige 0.010217560
3611          ocmw 0.009712025
2543      opdeling 0.008961252

[[3]]
              term       beta
2537 gedetineerden 0.02914266
3827 nationaliteit 0.02540042
3079    gevangenis 0.02136421
5311 gevangenissen 0.01215335
3515  asielzoekers 0.01204639

[[4]]
             term       beta
3435          btw 0.02814350
5536    kostprijs 0.02012880
3508          pod 0.01218093
2762          vzw 0.01088356
2996 vennootschap 0.01015108

[[5]]
               term        beta
3372        verbaal 0.011172118
3264    politiezone 0.008422602
3546 arrondissement 0.007855867
3052      inbreuken 0.007204257
2543       opdeling 0.007149355

[[6]]
                  term       beta
3296        instelling 0.04442037
3540 wetenschappelijke 0.03434755
2652             china 0.02702594
3043    volksrepubliek 0.01844959
3893          hongkong 0.01792639

[[7]]
               term        beta
2133       databank 0.003111386
3079     gevangenis 0.002650804
3255            dvz 0.002098217
3614         centra 0.001884672
2142 geneesmiddelen 0.001791468

[[8]]
         term       beta
2547 defensie 0.03706463
3785  kabinet 0.01323747
4054  griekse 0.01317877
3750   turkse 0.01238277
3076    leger 0.00964661

[[9]]
            term        beta
3649        nmbs 0.005472604
3704      beslag 0.004442090
2457   nucleaire 0.003911803
2461 mondmaskers 0.003712016
3533   materiaal 0.003513884

[[10]]
               term        beta
4586   politiezones 0.017413139
2248     voertuigen 0.012508971
3649           nmbs 0.008157282
2769 politieagenten 0.007591151
3863        beelden 0.006747020

[[11]]
              term        beta
3827 nationaliteit 0.009992087
4912        duitse 0.008966853
3484       turkije 0.008940011
2652         china 0.008723009
4008  overeenkomst 0.007879931

[[12]]
           term        beta
3651 opsplitsen 0.008752496
4247   kinderen 0.006497230
2606  sciensano 0.006430181
3170      tests 0.006420473
3587  studenten 0.006165542

[[13]]
               term        beta
3052      inbreuken 0.007657704
2447          drugs 0.006734609
2195      meldingen 0.005259825
3372        verbaal 0.005117311
3625 cyberaanvallen 0.004269334

[[14]]
         term       beta
2234 gebouwen 0.06128503
3531 digitale 0.03030998
3895    bpost 0.02974019
4105    regie 0.02608073
3224 infrabel 0.01758554

[[15]]
         term       beta
3649     nmbs 0.08117295
3826  station 0.03944306
3911    trein 0.03548101
4965  treinen 0.02843846
3117 stations 0.02732874

[[16]]
                term       beta
3649            nmbs 0.06778506
3240 personeelsleden 0.03363639
2972        telewerk 0.01857295
4965         treinen 0.01807373
3785         kabinet 0.01702784

[[17]]
                 term        beta
2371              app 0.009092372
3265          stoffen 0.006641808
2461      mondmaskers 0.006462210
3025 persoonsgegevens 0.005374488
2319         websites 0.005372964

[[18]]
         term       beta
5296 aangifte 0.01940070
3435      btw 0.01360575
2762      vzw 0.01307520
2756 facturen 0.01233578
2658 rekenhof 0.01196285

[[19]]
               term        beta
3631      beperking 0.017481016
3069       handicap 0.010403863
3905 tewerkstelling 0.009714387
3785        kabinet 0.006984415
2600      ombudsman 0.006074827

[[20]]
          term       beta
3228    geweld 0.05881281
4178   vrouwen 0.05113553
4247  kinderen 0.04818219
2814  jongeren 0.01803746
2195 meldingen 0.01548613

e. Predict alongside the model

newdata <- head(dtm, n = 5)
scores  <- predict(model, newdata, type = "topics")
scores

f. Save / Load model

torch_save(model, "my_etm.ckpt")
model <- torch_load("my_etm.ckpt")

g. Optionally - visualise the model in 2D

Example plot shown above was created using the following code

  • This uses R package textplot >= 0.2.0 which was updated on CRAN on 2021-08-18
  • The summary function maps the learned embeddings of the words and cluster centers in 2D using UMAP and textplot_embedding_2d plots the selected clusters of interest in 2D
library(textplot)
library(uwot)
library(ggrepel)
library(ggalt)
manifolded <- summary(model, type = "umap", n_components = 2, metric = "cosine", n_neighbors = 15, 
                      fast_sgd = FALSE, n_threads = 2, verbose = TRUE)
space      <- subset(manifolded$embed_2d, type %in% "centers")
textplot_embedding_2d(space)
space      <- subset(manifolded$embed_2d, cluster %in% c(12, 14, 9, 7) & rank <= 7)
textplot_embedding_2d(space, title = "ETM clusters", subtitle = "embedded in 2D using UMAP", 
                      encircle = FALSE, points = TRUE)

z. Or you can brew up your own code to plot things

  • Put embeddings of words and cluster centers in 2D using UMAP
library(uwot)
centers    <- as.matrix(model, type = "embedding", which = "topics")
embeddings <- as.matrix(model, type = "embedding", which = "words")
manifold   <- umap(embeddings, 
                   n_components = 2, metric = "cosine", n_neighbors = 15, fast_sgd = TRUE, 
                   n_threads = 2, ret_model = TRUE, verbose = TRUE)
centers    <- umap_transform(X = centers, model = manifold)
words      <- manifold$embedding
  • Plot words in 2D, color by cluster and add cluster centers in 2D
library(data.table)
terminology  <- predict(model, type = "terms", top_n = 7)
terminology  <- rbindlist(terminology, idcol = "cluster")
df           <- list(words   = merge(x = terminology, 
                                     y = data.frame(x = words[, 1], y = words[, 2], term = rownames(embeddings)), 
                                     by = "term"), 
                     centers = data.frame(x = centers[, 1], y = centers[, 2], 
                                          term = paste("Cluster-", seq_len(nrow(centers)), sep = ""), 
                                          cluster = seq_len(nrow(centers))))
df           <- rbindlist(df, use.names = TRUE, fill = TRUE, idcol = "type")
df           <- df[, weight := ifelse(is.na(beta), 0.8, beta / max(beta, na.rm = TRUE)), by = list(cluster)]

library(textplot)
library(ggrepel)
library(ggalt)
x <- subset(df, type %in% c("words", "centers") & cluster %in% c(1, 3, 4, 8))
textplot_embedding_2d(x, title = "ETM clusters", subtitle = "embedded in 2D using UMAP", encircle = FALSE, points = FALSE)
textplot_embedding_2d(x, title = "ETM clusters", subtitle = "embedded in 2D using UMAP", encircle = TRUE, points = TRUE)
  • Or if you like writing down the full ggplot2 code
library(ggplot2)
library(ggrepel)
x$cluster   <- factor(x$cluster)
plt <- ggplot(x, 
    aes(x = x, y = y, label = term, color = cluster, cex = weight, pch = factor(type, levels = c("centers", "words")))) + 
    geom_text_repel(show.legend = FALSE) + 
    theme_void() + 
    labs(title = "ETM clusters", subtitle = "embedded in 2D using UMAP")
plt + geom_point(show.legend = FALSE)

## encircle if clusters are non-overlapping can provide nice visualisations
library(ggalt)
plt + geom_encircle(aes(group = cluster, fill = cluster), alpha = 0.4, show.legend = FALSE) + geom_point(show.legend = FALSE)

More examples are provided in the help of the ETM function see ?ETM Don't forget to set seeds to have reproducible behaviour

Support in text mining

Need support in text mining? Contact BNOSAC: http://www.bnosac.be

You might also like...
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Comments
  • license / copyright / citation

    license / copyright / citation

    Remarks can on better structuring of license / copyright can be put in this thread. Issue created as remarked from Adji at https://github.com/adjidieng/ETM-R/issues/3 Some notes on how copyright is referenced currently in the package

    • Description file indicates

      • R part at the R folder is from Jan Wijffels and indicated at https://github.com/bnosac/ETM/blob/master/DESCRIPTION#L7
      • The Python code at inst/orig is from Adji B. Dieng and colleagues https://github.com/bnosac/ETM/blob/master/DESCRIPTION#L9:L11
    • The file LICENSE.note provides the license as indicated at https://github.com/adjidieng/ETM/blob/master/LICENSE according to the CRAN recommendation at https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Licensing and refers to the clone in the inst/orig/ETM folder of the source code at https://github.com/adjidieng/ETM. The R package does not use this code when executing the model, code is only there as a reference.

    • The file LICENSE uses the template is indicated by the documentation of the R-project https://www.r-project.org/Licenses/MIT. At that location we can add as well Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei @adjidieng agrees with this.

    • We could as well add the citation as https://github.com/adjidieng/ETM-R/blob/main/inst/CITATION

    opened by jwijffels 5
  • Error in seq_len(nrow(x)) :    argument must be coercible to non-negative integer

    Error in seq_len(nrow(x)) : argument must be coercible to non-negative integer

    Hello! When I first tried your ETM package in R using the Belgian parliament data, it worked. However, when I was testing it on my (small) data, after running the ETM() function and optimizer, I encountered this error:

    Error in seq_len(nrow(x)) : argument must be coercible to non-negative integer

    Here is my code:

    library(topicmodels.etm)
    library(doc2vec)
    library(word2vec)
    gcash_data <- read.csv("GCash_200_Reviews_PlayStore_RepeatScroll20_Wait5s_TimeOut60s_AJAx.csv")
    names(gcash_data) <- c("UserName", "Date", "Likes", "Review", "Rating")
    gcash_r5 <- filter(gcash_data, Rating == "5")
    head(gcash_r5)
    str(gcash_r5)
    
    x      <- data.frame(doc_id           = gcash_r5$UserName, 
                         text             = gcash_r5$Review, 
                         stringsAsFactors = FALSE)
    x$text <- txt_clean_word2vec(x$text)
    
    w2v        <- word2vec(x = x$text, dim = 25, type = "skip-gram", iter = 10, min_count = 5, threads = 2)
    embeddings <- as.matrix(w2v)
    predict(w2v, newdata = c("app", "convenient"), type = "nearest", top_n = 4)
    
    library(udpipe)
    dtm   <- strsplit.data.frame(x, group = "doc_id", term = "text", split = " ")
    dtm   <- document_term_frequencies(dtm)
    dtm   <- document_term_matrix(dtm)
    dtm   <- dtm_remove_tfidf(dtm, prob = 0.50)
    
    vocab        <- intersect(rownames(embeddings), colnames(dtm))
    embeddings   <- dtm_conform(embeddings, rows = vocab)
    dtm          <- dtm_conform(dtm,     columns = vocab)
    dim(dtm)
    dim(embeddings)
    
    set.seed(1234)
    torch_manual_seed(4321)
    model     <- ETM(k = 5, dim = 100, embeddings = embeddings)
    optimizer <- optim_adam(params = model$parameters, lr = 0.005, weight_decay = 0.0000012)
    loss      <- model$fit(data = dtm, optimizer = optimizer, epoch = 20, batch_size = 5)
    

    As you may see in the code, for the ETM function, I changed args to k=5 topics. For model$fit, I changed args to batch_size =5.

    After running the last line above with "model$fit", the following error occurs: Error in seq_len(nrow(x)) : argument must be coercible to non-negative integer

    Is this because I am trying to run a small dataset? How may I solve this?

    Thank you in advance! :)

    opened by tinltan 4
  • add plot function

    add plot function

    • [x] - showing to show evolution of loss (plot(model, type = "loss", ...)
    • [ ] - showing words emitted by each topic (plot(model, type = "terminology", ...) ================> this will simplify workflow
    opened by jwijffels 1
  • change package name

    change package name

    • using log directory 'd:/RCompile/CRANguest/R-devel/ETM.Rcheck'
    • using R Under development (unstable) (2021-08-13 r80752)
    • using platform: x86_64-w64-mingw32 (64-bit)
    • using session charset: ISO8859-1
    • checking for file 'ETM/DESCRIPTION' ... OK
    • checking extension type ... Package
    • this is package 'ETM' version '0.1.0'
    • package encoding: UTF-8
    • checking CRAN incoming feasibility ... ERROR

    New submission

    Conflicting package names (submitted: ETM, existing: etm [https://CRAN.R-project.org])

    Conflicting package names (submitted: ETM, existing: etm [CRAN archive])

    opened by jwijffels 1
Releases(0.1.0)
Owner
bnosac
open sourced projects
bnosac
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023