DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

Overview

DANeS - Open-source E-newspaper dataset

12613 Source: Technology vector created by macrovector - www.freepik.com.

DANeS is an open-source E-newspaper dataset by collaboration between DATASET .JSC (dataset.vn) and AIV Group (aivgroup.vn) that contains over 600.000 online paper's articles. The articles are gathered from a number of Vietnamese Publishing Houses such as: tuoitre.vn, baobinhduong.vn, baoquangbinh.vn, kinhtechungkhoan.vn, doanhnghiep.vn, vnexpress.net, ...

We hope to support the community by providing a multi-purpose set of raw data for different subjects (students, developers, companies, …). So if you create something with this dataset, please share with us through our e-mail: [email protected]

Table of Contents

  1. Folder Tree
  2. Data format
  3. Labeling process
  4. Reviewing process
  5. Updating process
  6. License of annotated dataset
  7. About-us

Folder Tree

DANeS
  |
  |____README.md
  |
  |____raw_data
  |	   |____ DANeS_batch_#1.json
  |	   |____ DANeS_batch_#2.json
  |	   |____ DANeS_batch_#3.json
  |	   |____ DANeS_batch_#4.json
  |	   |____ DANeS_batch_#5.json
  |	   |____ DANeS_batch_#6.json
  |	   |____ DANeS_batch_#7.json
  |	   |____ DANeS_batch_#8.json
  |	   |____ README.md
  |
  |____annotated_data
  |	   |____ #contains annotated data
  |
  |____model
	   |____ Train_opensource.py
	   |____ README.md
	   |____ LICENSE

Data format

The raw dataset is stored in raw_data folder with .json format and has been divided into 8 batches. Each batch has an array that contains many json and each json is a record of the dataset. Here’s the example of each record's format:

Key Type Description
text string title of the digital news
meta json metadata of the digital news
uri string link to the digital news
description string description of the digital news

Example for a record of dataset:

{
        "text": "Ba ra đi vào ngày nhận điểm thi, nữ sinh được hỗ trợ học phí",
        "meta": {
            		"description": "Ngày nhận được tin đỗ đại học cũng là lúc bố mất vì Covid-19, L.A dường như gục ngã. Thế nhưng, bên cạnh em đã có các mạnh thường quân hỏi han, hỗ trợ về kinh tế.",
            		"uri": "https://yan.vn/ba-ra-di-vao-ngay-nhan-diem-thi-nu-sinh-duoc-ho-tro-hoc-phi-277328.html"
        	}
}

Labeling process

  • Log in:

DANeS 1 (1)

  • Annotating:

    • The article should be classified under one out of three sentiment: Negative, Positive and Neutral.
    • The article will then be classified by 22 topics: World, Politics, Economics, Sports, Cultures, Entertainment,Technology, Science, Education, Daily life, Regulations, Real estate, Social, Traffic, Environment, Stock market, Covid-19, Breaking news, Game, Movies, Health, Travel, Unidentified. Each article can carry numerous relevant and suitable topics.

DANeS 2

Reviewing process

The admin or the owner of the project will select qualified reviewers based on their attitude and performance. Reviewing process contains two main phases: cross validation and project reviewing.

  • The person who is assigned to cross validating will be given 20% of the annotated records from other annotators. This person will also be in charge of re-correcting the mislabeled records.
  • After the cross validation phase, the person who is assigned to review the project will randomly pick 20 - 50% of the total annotated records. Records that are not meet the given quality can either be:
    • Re-corrected by the project reviewer.
    • Re-assigned and re-corrected by the formal annotator.

Updating process

  • The raw data is expected to be fully uploaded at one time.

  • The annotated records are expected to be updated once a month to official repository of DANeS (https://github.com/dataset-vn/DANeS)

License of annotated dataset

Giấy phép Creative Commons
The annotated dataset of DANeS is licensed under Creative Commons Attribution 4.0 International License.

This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.

About us

DATASET .JSC - (+84) 98 442 0826 - [email protected]

Dataset’s mission is to support individuals and organizations with data collecting and data processing services by providing tools that simplify and enhance the efficiency of the processes. With the large and professional workers system, Dataset aspires to provide partners with a comprehensive and quality solution, suitable with the characteristics of the technology market.

Website: Dataset.vn

LinkedIn: Dataset.vn - Data Crowdsourcing Platform

Facebook: Dataset.vn - Data Crowdsourcing Platform

AIV Group - (+84) 931 458 189 - [email protected]

AIV Group aims to apply advanced technologies, especially Artificial Intelligence (AI), Cloud Computing, Big Data, … to digitize, modernize the long-established processes of information production and consumption in Viet Nam society. At the same time, we are working on solutions that solve new problems arising in the field of communication that relate to technology’s problems such as: fake news, images, videos are automatically cut and merged ..

Website: AIV Group

Facebook: AIV Group

Owner
DATASET .JSC
DATASET .JSC - A Data Crowdsourcing Platform
DATASET .JSC
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Yuqing Xie 2 Feb 17, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023