CARL provides highly configurable contextual extensions to several well-known RL environments.

Related tags

Deep LearningCARL
Overview

The CARL Benchmark Library

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments. It's designed to test your agent's generalization capabilities in all scenarios where intra-task generalization is important.

Benchmarks include:

  • OpenAI gym classic control suite extended with several physics context features like gravity or friction

  • OpenAI gym Box2D BipedalWalker, LunarLander and CarRacing, each with their own modification possibilities like new vehicles to race

  • All Brax locomotion environments with exposed internal features like joint strength or torso mass

  • Super Mario (TOAD-GAN), a procedurally generated jump'n'run game with control over level similarity

  • RNADesign, an environment for RNA design given structure constraints with structures from different datasets to choose from

Screenshot of each environment included in CARL.

Installation

We recommend you use a virtual environment (e.g. Anaconda) to install CARL and its dependencies. We recommend and test with python 3.9 under Linux.

First, clone our repository and install the basic requirements:

git clone https://github.com/automl/CARL.git --recursive
cd CARL
pip install .

This will only install the basic classic control environments, which should run on most operating systems. For the full set of environments, use the install options:

pip install -e .[box2d, brax, rna, mario]

These may not be compatible with Windows systems. Box2D environment may need to be installed via conda on MacOS systems:

conda install -c conda-forge gym-box2d

In general, we test on Linux systems, but aim to keep the benchmark compatible with MacOS as much as possible. Mario at this point, however, will not run on any operation system besides Linux

To install the additional requirements for ToadGAN:

javac src/envs/mario/Mario-AI-Framework/**/*.java

If you want to use the RNA design environment:

cd src/envs/rna/learna
make requirements
make data

In case you want to run our experiments or use our training files, also install the experiment dependencies:

pip install -e .[experiments]

Train an Agent

To get started with CARL, you can use our 'train.py' script. It will train a PPO agent on the environment of your choice with custom context variations that are sampled from a standard deviation.

To use MetaCartPole with variations in gravity and friction by 20% compared to the default, run:

python train.py 
--env CARLCartPoleEnv 
--context_args gravity friction
--default_sample_std_percentage 0.2
--outdir <result_location>

You can use the plotting scripts in src/eval to view the results.

CARL's Contextual Extension

CARL contextually extends the environment by making the context visible and configurable. During training we therefore can encounter different contexts and train for generalization. We exemplarily show how Brax' Fetch is extended and embedded by CARL. Different instiations can be achieved by setting the context features to different values.

CARL contextually extends Brax' Fetch.

Cite Us

@misc{CARL,
  author    = {C. Benjamins and 
               T. Eimer and 
               F. Schubert and 
               A. Biedenkapp and 
               B. Rosenhahn and 
               F. Hutter and 
               M. Lindauer},
  title     = {CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning},
  howpublished = {https://github.com/automl/CARL},
  year      = {2021},
  month     = aug,
}

References

OpenAI gym, Brockman et al., 2016. arXiv preprint arXiv:1606.01540

Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation, Freeman et al., NeurIPS 2021 (Dataset & Benchmarking Track)

TOAD-GAN: Coherent Style Level Generation from a Single Example, Awiszus et al., AIIDE 2020

Learning to Design RNA, Runge et al., ICRL 2019

License

CARL falls under the Apache License 2.0 (see file 'LICENSE') as is permitted by all work that we use. This includes CARLMario, which is not based on the Nintendo Game, but on TOAD-GAN and TOAD-GUI running under an MIT license. They in turn make use of the Mario AI framework (https://github.com/amidos2006/Mario-AI-Framework). This is not the original game but a replica, explicitly built for research purposes and includes a copyright notice (https://github.com/amidos2006/Mario-AI-Framework#copyrights ).

Comments
  • Rna fixup

    Rna fixup

    RNA is now better documented and more easily runnable. There's also an option to subsample the datasets instead of always using all instances per context.

    The thing that's missing right now are more context options like filtering by solvers or GC-content, but those aren't easily extractable from our data right now, so that's a separate work package all together.

    opened by TheEimer 6
  • Gym 0.22.0

    Gym 0.22.0

    • update required minimum gym version number
    • added pygame as a requirement because it is not picked up by the gym requirements
    • getting rid of CustomBipedalWalkerEnv because the functionality of changing the gravity is covered by CARLEnv (same for CustomLunarLanderEnv)
    • add high game over penalty for LunarLander by a wrapper
    opened by benjamc 6
  • Instance selection

    Instance selection

    Instance selection now is a class. Default is still roundrobin selection. An instance is only selected when env.reset() (or to be more specific, _progress_instance() is called.

    opened by benjamc 4
  • Added Encoders

    Added Encoders

    Context encoders have been added as a folder and an experiment for running the encoder added in the experiments folders. Since the working directory is the experiment one, I had to add an absolute path for the saved weights. This might need to be changed in the config file

    opened by amsks 4
  • Update References with correct conference

    Update References with correct conference

    Thanks for the pointer to the survey, but it hasn't been published anywhere, so that detail is incorrect (I wouldn't want to claim that it's published somewhere when it isn't).

    opened by RobertKirk 3
  • Performance Deviations in Brax

    Performance Deviations in Brax

    Comparing HalfCheetah in Brax (via gym.make and then wrapped as here: https://github.com/google/brax/blob/main/notebooks/training_torch.ipynb) vs in CARL makes a big difference in return even when the context is kept static. Do we do any unexpected reward normalization? Does the way we reset the env make a difference compared to theirs (as we actually update the simluation)?

    bug 
    opened by TheEimer 2
  • Integrate DM Control

    Integrate DM Control

    • [ ] (convert test file to jupyter notebook. I would like to keep that)
    • [ ] check tests / write more to increase coverage
    • [x] update README.md
    • [x] update documentation
    • [x] add dm_control to requirements
    • [x] support dict observation space
    documentation tests 
    opened by benjamc 2
  • Fix gym version

    Fix gym version

    Gym released a new version where the signature of the step function has changed. This affects our code and requires a separate PR. For now, fix the gym version.

    opened by benjamc 1
  • Initial statedistrs #48

    Initial statedistrs #48

    #48 Make initial state distribution configurable. So far, only uniform distributions are used and the bounds can be adjusted.

    Classic control:

    • [x] Acrobot
    • [x] Pendulum
    • [x] MountainCar (normal distribution instead of uniform)
    • [x] MountainCarContinuous (uniform distribution)
    • [x] CartPole

    Box2d

    • [x] LunarLander

    • [ ] (maybe/later) Make distributions fully configurable by passing the distribution class and its parameters.

    • [x] Update documentation: Contexts are automatically filled with the default context if underspecified.

    opened by benjamc 1
  • Integrate dmcontrol

    Integrate dmcontrol

    Add support for dm control environments. Integrated walker, quadruped and fish.

    In dmc environments there is an additional setting for the context, namely the context mask, which can reduce the amount of context features.

    opened by sebidoe 1
  • use appropriate library for building states

    use appropriate library for building states

    So far, when we do not hide the context, we concatenate the context to the state. For jax based environments (brax) this means that the state is converted from a jax to a numpy array. Now, the state builder checks which library to use and keeps jax states as jax arrays and numpy states as numpy arrays.

    Noticed in #42.

    opened by benjamc 1
  • AttributeError: 'System' object has no attribute 'body_idx' in brax

    AttributeError: 'System' object has no attribute 'body_idx' in brax

    when running test/test_all_envs.py, there is AttributeError: 'System' object has no attribute 'body_idx' in carl_fetch and carl_humanoid environments.

    opened by andy-james0310 3
Releases(v0.2.0)
  • v0.2.0(Jul 12, 2022)

    • Integrate dm control environments (#55)
    • Add context masks to only append those to the state (#54)
    • Extend classic control environments to parametrize initial state distributions (#52)
    • Remove RNA environment for maintenance (#61)
    • Fixed pre-commit (mypy, black, flake8, isort) (#62)
    Source code(tar.gz)
    Source code(zip)
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022