Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Overview

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

this repository is maintained by both Jun Gao and Yuhan Liu

Environment Requirment

  • pytorch >= 1.4.0
  • texar.torch
  • bert-score
  • nltk

Model Overview

model

Running

  1. we use RECCON to train an emotion cause detection model and apply it to annatate EmpatheticDialogues. The processed data is in Data.

  2. Then you need to pretrain the emotion classification model, here you need to download glove.6B.300d first and then running the following command. Here $GLOVE is the glove embedding file:

    bash ./bash/run_emotion.sh --glove $GLOVE --gpu_id 0
  3. To train the model and generate the automatic metric results, firstly you need to make sure that bert-score is successfully installed. In our paper, we use roberta-large-en rescaled with baseline to calculate BERTScore. You can download roberta-large-en from Hugginface. For the rescaled_baseline file, we can download it from here.

    Then run the following command. Here $ROBERTA_DIR is the downloaded roberta-large-en model directory and $BASELINE is downloaded baseline file.

    to train soft-gate model:

    bash ./bash/run_generation.sh --glove $GLOVE --gpu_id 0 --mode soft --roberta $ROERBTA_DIR --baseline $BASELINE --do_train

    to test soft-gate model:

    bash ./bash/run_generation.sh --glove $GLOVE --gpu_id 0 --mode soft --roberta $ROERBTA_DIR --baseline $BASELINE --do_test

    to train hard-gate model:

    bash ./bash/run_generation.sh --glove $GLOVE --gpu_id 0 --mode hard --roberta $ROERBTA_DIR --baseline $BASELINE --do_train

    to test hard-gate model:

    bash ./bash/run_generation.sh --glove $GLOVE --gpu_id 0 --mode hard --roberta $ROERBTA_DIR --baseline $BASELINE --do_test

Acknowledgement

@inproceedings{gao-etal-2021-improving-empathetic,
    title = "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations",
    author = "Gao, Jun  and Liu, Yuhan  and Deng, Haolin  and Wang, Wei  and Cao, Yu  and Du, Jiachen  and Xu, Ruifeng",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    pages = "807--819",
    publisher = "Association for Computational Linguistics"
}
Owner
Yuhan Liu
NLPer
Yuhan Liu
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022