Credit Fraud detection: Context: It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Dataset Location : This dataset could be found at https://www.kaggle.com/mlg-ulb/creditcardfraud This dataset (creditcard.csv) was provided by KAGGLE The dataset contains transactions made by credit cards in September 2013 by European cardholders. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. This dataset is already preprocessed. I began with splitting the dataset into train and test sets with a split of 0.75:0.25, Did a brief analysis and checked that the dataset contains 99.8% of the values are labeled as not fraud and only 0.2% are labeled as fraud. I bootstrapped the data by upsampling the training dataset because if we had only a few positives relative to negatives, the training model will spend most of its time on negative examples and not learn enough from positive ones. Therefore I bootstrapped the data to make it balanced. Then I applied Random Forest with the number of trees = 20 and determined which were the most important features for our model. I followed with Logistic Regression Then finally I followed by a Gaussian Naive Bayes I tested all three models for accuracy, precision, recall and f1 score. The Random Forest model has better accuaracy and precision than the Logistic Regression and Gaussian Naive Bayes models, but Logistic regression has the best recall, yet Random Forest has the best f1 score which is the harmonic average between precision and recall.
Credit fraud detection in Python using a Jupyter Notebook
Overview
graph-theoretic framework for robust pairwise data association
CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the
Weighted QMIX: Expanding Monotonic Value Function Factorisation
This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"
Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go
BuildingNet: Learning to Label 3D Buildings
BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx
Python Wrapper for Embree
pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"
M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.
📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"
FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between
CBKH: The Cornell Biomedical Knowledge Hub
Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.
Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of
LAnguage Model Analysis
LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning
SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)
SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms
benchmark_spaces Benchmarks of how well different two dimensional spaces work fo
A list of all named GANs!
The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re