Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

Related tags

Deep Learningmlsd
Overview

M-LSD: Towards Light-weight and Real-time Line Segment Detection

Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

Geonmo Gu*, Byungsoo Ko*, SeoungHyun Go, Sung-Hyun Lee, Jingeun Lee, Minchul Shin (* Authors contributed equally.)

@NAVER/LINE Vision

Paper | Colab | PPT

Gradio Web Demo by AK391

Overview

First figure: Comparison of M-LSD and existing LSD methods on GPU. Second figure: Inference speed and memory usage on mobile devices.

We present a real-time and light-weight line segment detector for resource-constrained environments named Mobile LSD (M-LSD). M-LSD exploits extremely efficient LSD architecture and novel training schemes, including SoL augmentation and geometric learning scheme. Our model can run in real-time on GPU, CPU, and even on mobile devices.

Line segment & box detection demo

We prepared a line segment and box detection demo using M-LSD models. This demo is developed based on python flask, making it easy to see results through a web browser such as Google Chrome.

All M-LSD family are already converted to tflite models. Because it uses tflite models, it does not require a GPU to run the demo.

Note that we make the model to receive RGBA images (A is for alpha channel) as input to the model when converting the tensorflow model to the tflite model, in order to follow TIPs for optimization to mobile gpu.

Don't worry about alpha channel. In a stem layer of tflite models, all zero convolutional kernel is applied to alpha channel. Thus, results are same regardless of the value of alpha channel.

Post-processing codes for a box detection are built in Numpy. If you consider to run this box dectector on mobile devices, we recommend porting post-processing codes to eigen3-based codes.

Above examples are captured using M-LSD tiny with 512 input size

How to run demo

Install requirements

$ pip install -r requirements.txt

Run demo

$ python demo_MLSD.py

Colab notebook

You can jump right into line segment and box detection using M-LSD with our Colab notebook. The notebook supports interactive UI with Gradio as below.

Citation

If you find M-LSD useful in your project, please consider to cite the following paper.

@misc{gu2021realtime,
    title={Towards Real-time and Light-weight Line Segment Detection},
    author={Geonmo Gu and Byungsoo Ko and SeoungHyun Go and Sung-Hyun Lee and Jingeun Lee and Minchul Shin},
    year={2021},
    eprint={2106.00186},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
NAVER/LINE Vision
Open source repository of Vision, NAVER & LINE
NAVER/LINE Vision
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
JugLab 33 Dec 30, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022