The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

Related tags

Deep LearningEMANet
Overview

EMANet

News

  • The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again.
  • EMANet-101 gets 80.99 on the PASCAL VOC dataset (Thanks for Sensetimes' server). So, with a classic backbone(ResNet) instead of some newest ones(WideResNet, HRNet), EMANet still achieves the top performance.
  • EMANet-101 (OHEM) gets 81.14 in mIoU on Cityscapes val using single-scale inference, and 81.9 on test server with multi-scale inference.

Background

This repository is for Expectation-Maximization Attention Networks for Semantic Segmentation (to appear in ICCV 2019, Oral presentation),

by Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin and Hong Liu from Peking University.

The source code is now available!

citation

If you find EMANet useful in your research, please consider citing:

@inproceedings{li19,
    author={Xia Li and Zhisheng Zhong and Jianlong Wu and Yibo Yang and Zhouchen Lin and Hong Liu},
    title={Expectation-Maximization Attention Networks for Semantic Segmentation},
    booktitle={International Conference on Computer Vision},   
    year={2019},   
}

table of contents

Introduction

Self-attention mechanism has been widely used for various tasks. It is designed to compute the representation of each position by a weighted sum of the features at all positions. Thus, it can capture long-range relations for computer vision tasks. However, it is computationally consuming. Since the attention maps are computed w.r.t all other positions. In this paper, we formulate the attention mechanism into an expectation-maximization manner and iteratively estimate a much more compact set of bases upon which the attention maps are computed. By a weighted summation upon these bases, the resulting representation is low-rank and deprecates noisy information from the input. The proposed Expectation-Maximization Attention (EMA) module is robust to the variance of input and is also friendly in memory and computation. Moreover, we set up the bases maintenance and normalization methods to stabilize its training procedure. We conduct extensive experiments on popular semantic segmentation benchmarks including PASCAL VOC, PASCAL Context, and COCO Stuff, on which we set new records. EMA Unit

Design

As so many peers have starred at this repo, I feel the great pressure, and try to release the code with high quality. That's why I didn't release it until today (Aug, 22, 2018). It's known that the design of the code structure is not an easy thing. Different designs are suitable for different usage. Here, I aim at making research on Semantic Segmentation, especially on PASCAL VOC, more easier. So, I delete necessary encapsulation as much as possible, and leave over less than 10 python files. To be honest, the global variables in settings are not a good design for large project. But for research, it offers great flexibility. So, hope you can understand that

For research, I recommand seperatting each experiment with a folder. Each folder contains the whole project, and should be named as the experiment settings, such as 'EMANet101.moving_avg.l2norm.3stages'. Through this, you can keep tracks of all the experiments, and find their differences just by the 'diff' command.

Usage

  1. Install the libraries listed in the 'requirements.txt'
  2. Downloads images and labels of PASCAL VOC and SBD, decompress them together.
  3. Downloads the pretrained ResNet50 and ResNet101, unzip them, and put into the 'models' folder.
  4. Change the 'DATA_ROOT' in settings.py to where you place the dataset.
  5. Run sh clean.sh to clear the models and logs from the last experiment.
  6. Run python train.py for training and sh tensorboard.sh for visualization on your browser.
  7. Or you can download the pretraind model, put into the 'models' folder, and skip step 6.
  8. Run python eval.py for validation

Ablation Studies

The following results are referred from the paper. For this repo, it's not strange to get even higer performance. If so, I'd like you share it in the issue. By now, this repo only provides the SS inference. I may release the code for MS and Flip latter.

Tab 1. Detailed comparisons with Deeplabs. All results are achieved with the backbone ResNet-101 and output stride 8. The FLOPs and memory are computed with the input size 513×513. SS: Single scale input during test. MS: Multi-scale input. Flip: Adding left-right flipped input. EMANet (256) and EMANet (512) represent EMANet withthe number of input channels for EMA as 256 and 512, respectively.

Method SS MS+Flip FLOPs Memory Params
ResNet-101 - - 190.6G 2.603G 42.6M
DeeplabV3 78.51 79.77 +63.4G +66.0M +15.5M
DeeplabV3+ 79.35 80.57 +84.1G +99.3M +16.3M
PSANet 78.51 79.77 +56.3G +59.4M +18.5M
EMANet(256) 79.73 80.94 +21.1G +12.3M +4.87M
EMANet(512) 80.05 81.32 +43.1G +22.1M +10.0M

To be note, the majority overheads of EMANets come from the 3x3 convs before and after the EMA Module. As for the EMA Module itself, its computation is only 1/3 of a 3x3 conv's, and its parameter number is even smaller than a 1x1 conv.

Comparisons with SOTAs

Note that, for validation on the 'val' set, you just have to train 30k on the 'trainaug' set. But for test on the evaluation server, you should first pretrain on COCO, and then 30k on 'trainaug', and another 30k on the 'trainval' set.

Tab 2. Comparisons on the PASCAL VOC test dataset.

Method Backbone mIoU(%)
GCN ResNet-152 83.6
RefineNet ResNet-152 84.2
Wide ResNet WideResNet-38 84.9
PSPNet ResNet-101 85.4
DeeplabV3 ResNet-101 85.7
PSANet ResNet-101 85.7
EncNet ResNet-101 85.9
DFN ResNet-101 86.2
Exfuse ResNet-101 86.2
IDW-CNN ResNet-101 86.3
SDN DenseNet-161 86.6
DIS ResNet-101 86.8
EMANet101 ResNet-101 87.7
DeeplabV3+ Xception-65 87.8
Exfuse ResNeXt-131 87.9
MSCI ResNet-152 88.0
EMANet152 ResNet-152 88.2

Code Borrowed From

RESCAN

Pytorch-Encoding

Synchronized-BN

joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022