This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Overview

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning

This repository contains all the source code that is needed for the Project : An Efficient Pipeline For Bloom’s Taxonomy with Question Generation Using Natural Language Processing and Deep Learning.

Outline :

An examination assessment undertaken by educational institutions is an essential process, since it is one of the fundamental steps to determine a student’s progress and achievements for a distinct subject or course. To meet learning objectives, the questions must be presented by the topics, that are mastered by the students. Generation of examination questions from an extensive amount of available text material presents some complications. The current availability of huge lengths of textbooks makes it a slow and time-consuming task for a faculty when it comes to manually annotate good quality of questions keeping in mind, they are well balanced as well. As a result, faculties rely on Bloom’s taxonomy's cognitive domain, which is a popular framework, for assessing students’ intellectual abilities. Therefore, the primary goal of this research paper is to demonstrate an effective pipeline for the generation of questions using deep learning from a given text corpus. We also employ various neural network architectures to classify questions into the cognitive domain of different levels of Bloom’s taxonomy using deep learning, to derive questions and judge the complexity and specificity of those questions. The findings from this study showed that the proposed pipeline is significant in generating the questions, which were equally similar concerning manually annotated questions and classifying questions from multiple domains based on Bloom’s taxonomy.

Main Proposed Pipeline Layout :

Used Datasets

  • Squad Dataset 2.0 - Used In Question Generation Module. Released in 2018, has over 150,000 question-answer pairs.

  • "Yahya et al, (2012)" Introduced Dataset - Dataset Used in Question Classification Module.Consists of around 600 open-ended questions, covering a wide variety of questions belonging to the different levels of the cognitive domain. Original Dataset required some basic pre-processing and then manually converted into dataframe. Check out main paper cited here.

  • Quora Question Pairs Dataset- Dataset Used in Case study of computing semantic similarity between generated questions from T5 Transformer and manually annotated questions from survey form.

Question Generation Module:

The dataset being used for the question generation is Squad (The Stanford Question Answering Dataset) 2.0 Dataset. Squad 2.0 is an extension of the original Squad V1.1 that was published in 2016 by Stanford University.

In this paper, we have implemented T5 Transformer, which is then fine-tuned using PyTorch lightning and training it on the Squad 2.0 dataset. T5 is essentially an encoder-decoder model which takes in all NLP problems and has them converted to a text-to-text format.

Table 1

Passage Answer Context
The term health is very frequently used by everybody. How do we define it? Health does not simply mean "absence of disease" or "physical fitness". It could be defined as a state of complete physical, mental and social well-being. When people are healthy, they are more efficient at work. This increases productivity and brings economic prosperity. Health also increases longevity of people and reduces infant and maternal mortality. When the functioning of one or more organs or systems of the body is adversely affected, characterized by appearance of various signs and symptoms,we say that we are not healthy, i.e., we have a disease. Diseases can be broadly grouped into infectious and non-infectious. Diseases which are easily transmitted from one person to another, are called infectious diseases.' Easily transmitted from one person to another
Proteins are the most abundant biomolecules of the living system. Chief sources of proteins are milk, cheese, pulses, peanuts, fish, meat, etc. They occur in every part of the body and form the fundamental basis of structure and functions of life. They are also required for growth and maintenance of the body. The word protein is derived from Greek word, “proteios” which means primary or of prime importance. Greek Word

Table 1 shows the passages that we have input it into the model and the answers that we want the questions to be generated. We have taken these passages from various high school level books.

Table 2

Answer Context Easily transmitted from one person to another Greek Word
Questions Generated How are infectious diseases defined? What does the word protein come from?
Questions Received What do you mean by infectious disease? What is "proteios"? From which language was it derived from?

As you can see in table 2, the questions generated row are the questions generated as per the answer context by our model. Correspondingly, the Questions Received are the ones that we obtained from circulating a survey that contained the same passage and context.

Results

After training, we observed a steady decrease in training loss Fig. 3. The validation loss fluctuated and has been observed in Fig. 4. Note that due to fewer computation resources, we could train for only a limited amount of time, and hence the fluctuations in validation loss.

  • Training Loss = 0.070
  • Validation Loss = 2.39

Question Classification Module :

A deep learning-based model for multi class classification which takes in a text as input and tries to classify a certain category out of multiple categories in coginitive domain of bloom's taxonomy.

Dataset Used : Yahaa et all (2012)

Model Pipeline :

Model Architecture :

Results :

Summarised Evaluation :

S.No Model Optimizer Accuracy Loss Dropout
1 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam 80.83 0.6842
2 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSProp 80.00 1.50
3 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam with ClipNorm=1.25 83.33 0.86
4 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSProp with ClipNorm=1.25 79.17 2.10
5 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam 86.67 0.59 Recurrent Dropout=0.1
6 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSprop 78.83 2.54 Recurrent Dropout=0.1
7 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam with ClipNorm=1.25 85.83 0.56 Recurrent Dropout=0.1
8 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSprop with ClipNorm=1.25 75.83 0.76 Recurrent Dropout=0.1
9 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 100-D Adam With ClipNorm=1.25 73.33 1.28
10 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 300-D Adam With ClipNorm=1.25 75.83 0.88
11 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 100-D RMSprop With ClipNorm=1.25 73.33 2.31
12 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 300-D RMSprop With ClipNorm=1.25 80.00 1.12

The Best Performance was exhibited by the following dense neural network : ConvNet 1D with 2 Bidirectional LSTMs Layers ,along with Adam optimizer and recurrent dropout =0.1 as regulariser.

Following Results were obtained :

  • Accuracy : 86.67 %
  • Loss : 0.59

Accuracy vs Loss Plot :

Siamese Neural Network for Computing Sentence Similarity – A Case Study :

With a thorough analysis of the outputs, i.e., questions, generated from the proposed model,a case study was done to evaluate how much the generated questions are semantically similar to the questions if annotated manually. For this evaluation, we considered an effective pipeline of Siamese neural networks. This study was done in order to explore insights about the effectiveness of our proposed pipeline – how much our model is efficient to generate questions when compared to the manual annotation of the questions which requires comparatively more hard work and time.

Model Architecture :

Generated Questions Manually Annotated Questions Context Similarity Score
Why is health more efficient at work? How does health affect efficiency at work? Increases Productivity And Brings Economic Prosperity 0.4464
What is the health of people more efficient at work? What are the outcomes of being more efficient at work as a result of good health? Increases Productivity And Brings Economic Prosperity 0.4811
What is the term infectious disease? What do you mean by infectious disease? Easily Transmitted From One Person To Another 0.3505
How are infectious diseases defined? Define infectious disease. Easily Transmitted From One Person To Another 0.2489
According to classical electromagnetic theory, an accelerating charged particle does what ? According to electromagnetic theory what happens when a charged particle accelerates ? Emits Radiation In The Form Of Electromagnetic Waves 0.2074
What does the theory of an accelerating charged particle imply ? What does the classical electromagnetic theory state ? Emits Radiation In The Form Of Electromagnetic Waves 0.0474
What was the Harappans's strategy of sending expeditions to ? What was the primary reason for settlements and expeditions as seen from Harappans's ? Strategy For Procuring Raw Materials 0.4222
What was the idea behind sending expeditions to Rajasthan ? Why did the Harappans's send expeditions to areas in Rajasthan ? Strategy For Procuring Raw Materials 0.6870
What was a feature of the Ganeshwar culture ? What was the distinctive feature of the Ganeshwar culture ? Non-Harappan Pottery 0.6439
What type of artefacts are from the Ganeshwar culture ? What kind of artefacts are from Ganeshwar culture ? Non-Harappan Pottery 0.4309
Proteins form the basis of what? What is the significance of proteins ? Function Of Life 0.1907
What are proteins the fundamental basis of ? What does protein form along with fundamental basis of structure ? Function Of Life 0.1775

The above analysis is a sample from a set of recorded observations evaluated by our network. This clearly indicates the depth of similarity score between generated questions from the transformer and manually annotated questions from the survey.

Accuracy vs Loss Plot :

Owner
Rohan Mathur
3rd Year Undergrad | Data Science Enthusiast
Rohan Mathur
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021