A minimal Conformer ASR implementation adapted from ESPnet.

Overview

Conformer ASR

A minimal Conformer ASR implementation adapted from ESPnet.

Introduction

I want to use the pre-trained English ASR model provided by ESPnet. However, ESPnet is relatively heavy for me. So here I try to extract only the conformer ASR part from ESPnet so that I can do better customization. Let's do it.

There are bunch of models available for ASR listed here. I choose the one with name:

kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.acc.ave
Its performance can be found [here](https://zenodo.org/record/4604066#.YbxsX5FByV4), toggle me to see.
  • WER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 54402 97.9 1.9 0.2 0.2 2.3 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 50948 94.5 5.1 0.5 0.6 6.1 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 52576 97.7 2.1 0.2 0.3 2.6 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 52343 94.7 4.9 0.5 0.7 6.0 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 54402 98.3 1.5 0.2 0.2 1.9 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 50948 95.8 3.7 0.4 0.5 4.6 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 52576 98.1 1.7 0.2 0.3 2.1 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 52343 95.8 3.7 0.5 0.5 4.7 42.4
  • CER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 288456 99.4 0.3 0.2 0.2 0.8 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 265951 98.0 1.2 0.8 0.7 2.7 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 281530 99.4 0.3 0.3 0.3 0.9 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 272758 98.2 1.0 0.7 0.7 2.5 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 288456 99.5 0.3 0.2 0.2 0.7 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 265951 98.3 1.0 0.7 0.5 2.2 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 281530 99.5 0.3 0.3 0.2 0.7 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 272758 98.5 0.8 0.7 0.5 2.1 42.4
  • TER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 68010 97.5 1.9 0.7 0.4 2.9 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 63110 93.4 5.0 1.6 1.0 7.6 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 65818 97.2 2.0 0.8 0.4 3.3 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 65101 93.7 4.5 1.8 0.9 7.2 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 68010 97.8 1.5 0.7 0.3 2.5 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 63110 94.6 3.8 1.6 0.7 6.1 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 65818 97.6 1.6 0.8 0.3 2.7 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 65101 94.7 3.5 1.8 0.7 6.0 42.4

ASR step by step

1. Setup code

pip install .

2. Download the model and unzip it

wget https://zenodo.org/record/4604066/files/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.acc.ave.zip?download=1 -o conformer.zip
unzip conformer.zip

3. Run an example

import torch
import librosa
from mmds.utils.spectrogram import MelSpectrogram
from conformer_asr import Conformer, Tokenizer

sample_rate = 16000
cfg_path = "./exp_unnorm/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000/config.yaml"
bpe_path = "./data/en_unnorm_token_list/bpe_unigram5000/bpe.model"
ckpt_path = "./exp_unnorm/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000/valid.acc.ave_10best.pth"

tokenizer = Tokenizer(cfg_path, bpe_path)
conformer = Conformer(tokenizer, ckpt_path=ckpt_path)
conformer.eval()

spec_fn = MelSpectrogram(
    sample_rate,
    hop_length=256,
    f_min=0,
    f_max=8000,
    win_length=512,
    power=2,
)

w0, _ = librosa.load("./example.m4a", sample_rate)
w0 = torch.from_numpy(w0)
m0 = spec_fn(w0).t()

l = len(m0)

# create batch with different length audio (yes, supported)
x = [m0, m0[: l // 2], m0[: l // 4]]

ref = "This is a test video for youtube-dl. For more information, contact [email protected]".lower()
hyps = conformer.decode(x, beam_width=20)

print("REF", ref)
for hyp in hyps:
    print("HYP", hyp.lower())
  • Results
REF this is a test video for youtube-dl. for more information, contact [email protected]
HYP this is a test video for you do bl for more information -- contact the hih aging at the hihaging, not the
HYP this is a test for you d bl for more information
HYP this is a testim for you to

Features

Supported

  • Batched decoding

Not supported yet

  • Transformer language model
  • Other checkpoints
Owner
Niu Zhe
Niu Zhe
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022