Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Overview

Unified-EPT

Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Installation

  • Linux, CUDA>=10.0, GCC>=5.4
  • Python>=3.7
  • Create a conda environment:
    conda create -n unept python=3.7 pip

Then, activate the environment:

    conda activate unept
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

For example:

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Data Preparation

Please following the code from openseg to generate ground truth for boundary refinement.

The data format should be like this.

ADE20k

You can download the processed dt_offset file here.

path/to/ADEChallengeData2016/
  images/
    training/
    validation/
  annotations/ 
    training/
    validation/
  dt_offset/
    training/
    validation/

PASCAL-Context

You can download the processed dataset here.

path/to/PASCAL-Context/
  train/
    image/
    label/
    dt_offset/
  val/
    image/
    label/
    dt_offset/

Usage

Training

The default is for multi-gpu, DistributedDataParallel training.

python -m torch.distributed.launch --nproc_per_node=8 \ # specify gpu number
--master_port=29500  \
train.py  --launcher pytorch \
--config /path/to/config_file 
  • specify the data_root in the config file;
  • log dir will be created in ./work_dirs;
  • download the DeiT pretrained model and specify the pretrained path in the config file.

Evaluation

# single-gpu testing
python test.py --checkpoint /path/to/checkpoint \
--config /path/to/config_file \
--eval mIoU \
[--out ${RESULT_FILE}] [--show] \
--aug-test \ # for multi-scale flip aug

# multi-gpu testing (4 gpus, 1 sample per gpu)
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 \
test.py  --launcher pytorch --eval mIoU \
--config_file /path/to/config_file \
--checkpoint /path/to/checkpoint \
--aug-test \ # for multi-scale flip aug

Results

We report results on validation sets.

Backbone Crop Size Batch Size Dataset Lr schd Mem(GB) mIoU(ms+flip) config
Res-50 480x480 16 ADE20K 160K 7.0G 46.1 config
DeiT 480x480 16 ADE20K 160K 8.5G 50.5 config
DeiT 480x480 16 PASCAL-Context 160K 8.5G 55.2 config

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Citation

If you use this code and models for your research, please consider citing:

@article{zhu2021unified,
  title={A Unified Efficient Pyramid Transformer for Semantic Segmentation},
  author={Zhu, Fangrui and Zhu, Yi and Zhang, Li and Wu, Chongruo and Fu, Yanwei and Li, Mu},
  journal={arXiv preprint arXiv:2107.14209},
  year={2021}
}

Acknowledgment

We thank the authors and contributors of MMCV, MMSegmentation, timm and Deformable DETR.

Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022