[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Related tags

Deep LearningattMPTI
Overview

Few-shot 3D Point Cloud Semantic Segmentation

Created by Na Zhao from National University of Singapore

teaser

Introduction

This repository contains the PyTorch implementation for our CVPR 2021 Paper "Few-shot 3D Point Cloud Semantic Segmentation" by Na Zhao, Tat-Seng Chua, Gim Hee Lee.

Many existing approaches for point cloud semantic segmentation are fully supervised. These fully supervised approaches heavily rely on a large amount of labeled training data that is difficult to obtain and can not generalize to unseen classes after training. To mitigate these limitations, we propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method to segment new classes given a few labeled examples. Specifically, each class is represented by multiple prototypes to model the complex data distribution of 3D point clouds. Subsequently, we employ a transductive label propagation method to exploit the affinities between labeled multi-prototypes and unlabeled query points, and among the unlabeled query points. Furthermore, we design an attention-aware multi-level feature learning network to learn the discriminative features that capture the semantic correlations and geometric dependencies between points. Our proposed method shows significant and consistent improvements compared to the baselines in different few-shot point cloud segmentation settings (i.e. 2/3-way 1/5-shot) on two benchmark datasets.

Installation

  • Install python --This repo is tested with python 3.6.8.
  • Install pytorch with CUDA -- This repo is tested with torch 1.4.0, CUDA 10.1. It may work with newer versions, but that is not gauranteed.
  • Install faiss with cpu version
  • Install 'torch-cluster' with the corrreponding torch and cuda version
     pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
    
  • Install dependencies
    pip install tensorboard h5py transforms3d
    

Usage

Data preparation

S3DIS

  1. Download S3DIS Dataset Version 1.2.

  2. Re-organize raw data into npy files by running

    cd ./preprocess
    python collect_s3dis_data.py --data_path $path_to_S3DIS_raw_data
    

    The generated numpy files are stored in ./datasets/S3DIS/scenes/ by default.

  3. To split rooms into blocks, run

    python ./preprocess/room2blocks.py --data_path ./datasets/S3DIS/scenes/

    One folder named blocks_bs1_s1 will be generated under ./datasets/S3DIS/ by default.

ScanNet

  1. Download ScanNet V2.

  2. Re-organize raw data into npy files by running

    cd ./preprocess
    python collect_scannet_data.py --data_path $path_to_ScanNet_raw_data
    

    The generated numpy files are stored in ./datasets/ScanNet/scenes/ by default.

  3. To split rooms into blocks, run

    python ./preprocess/room2blocks.py --data_path ./datasets/ScanNet/scenes/ --dataset scannet

    One folder named blocks_bs1_s1 will be generated under ./datasets/ScanNet/ by default.

Running

Training

First, pretrain the segmentor which includes feature extractor module on the available training set:

cd scripts
bash pretrain_segmentor.sh

Second, train our method:

bash train_attMPTI.sh

Evaluation

bash eval_attMPTI.sh

Note that the above scripts are used for 2-way 1-shot on S3DIS (S^0). You can modified the corresponding hyperparameters to conduct experiments on other settings.

Citation

Please cite our paper if it is helpful to your research:

@inproceedings{zhao2021few,
  title={Few-shot 3D Point Cloud Semantic Segmentation},
  author={Zhao, Na and Chua, Tat-Seng and Lee, Gim Hee},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgement

We thank DGCNN (pytorch) for sharing their source code.

Owner
Ph.D. candidate in CS
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Roger Labbe 13k Dec 29, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022