QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

Overview

QuakeLabeler

Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently build and visualize their training data set.

Introduction

QuakeLabeler is a Python package to customize, build and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing. Current functionalities include retrieving waveforms from data centers, customizing seismic samples, auto-building datasets, preprocessing and augmenting for labels, and visualizing data distribution. The code helps all levels of AI developers and seismology researchers for querying and building their own earthquake datasets and can be used through an interactive command-line interface with little knowledge of Python.

Installation, Usage, documentation and scripts are described at https://maihao14.github.io/QuakeLabeler/

Author: Hao Mai(Developer and Maintainer) & Pascal Audet (Developer and Maintainer)

Installation

Conda environment

We recommend creating a custom conda environment where QuakeLabeler can be installed along with its dependencies.

  • Create a environment called ql and install pygmt:
conda create -n ql python=3.8 pygmt -c conda-forge
  • Activate the newly created environment:
conda activate ql

Installing from source

Download or clone the repository:

git clone https://github.com/maihao14/QuakeLabeler.git
cd QuakeLabeler
pip install .

If you work in development mode, use the -e argument as pip install -e .

Running the scripts

Create a work folder where you will run the scripts that accompany QuakeLabeler. For example:

mkdir ~/WorkFolder
cd WorkFolder

Run QuakeLabeler. Input QuakeLabeler to macOS terminal or Windows consoles:

QuakeLabeler

Or input quakelabeler also works:

quakelabeler

A QuakeLabeler welcome interface will be loading:

(ql) [email protected] QuakeLabeler % QuakeLabeler
Welcome to QuakeLabeler----Fast AI Earthquake Dataset Deployment Tool!
QuakeLabeler provides multiple modes for different levels of Seismic AI researchers

[Beginner] mode -- well prepared case studies;
[Advanced] mode -- produce earthquake samples based on Customized parameters.

Contributing

All constructive contributions are welcome, e.g. bug reports, discussions or suggestions for new features. You can either open an issue on GitHub or make a pull request with your proposed changes. Before making a pull request, check if there is a corresponding issue opened and reference it in the pull request. If there isn't one, it is recommended to open one with your rationale for the change. New functionality or significant changes to the code that alter its behavior should come with corresponding tests and documentation. If you are new to contributing, you can open a work-in-progress pull request and have it iteratively reviewed. Suggestions for improvements (speed, accuracy, etc.) are also welcome.

You might also like...
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

The code for our paper
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

AI Flow is an open source framework that bridges big data and artificial intelligence.
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • QuakeLabeler ModuleNotFoundError

    QuakeLabeler ModuleNotFoundError

    I followed the installation instructions to install the fascinating QuakeLabeler package But I encountered an error as follows Traceback (most recent call last): File "/home/panxiong/anaconda3/envs/ql/bin/QuakeLabeler", line 5, in <module> from quakelabeler.scripts.QuakeLabeler import main ModuleNotFoundError: No module named 'quakelabeler.scripts' Please give me a solution, thanks.

    opened by PANXIONG-CN 2
  • Error loading GMT shared library

    Error loading GMT shared library

    Hello,

    I was trying to use the QuakeLabeler package on some data and when I tried to run it I got the following error:

    pygmt.exceptions.GMTCLibNotFoundError: Error loading GMT shared library at 'libgmt.so'. libgmt.so: cannot open shared object file: No such file or directory

    I saw that there were some responses to a similar question in the past, but they all involved using conda, which I don't use at it interferes with other libraries I use.

    So far I tried using:

    pip install pygmt

    as well as GMT:

    sudo apt-get install gmt gmt-dcw gmt-gshhg sudo apt-get install ghostscript Unfortunately, it did not work.

    Any suggestions would be appreciated

    opened by sbrent88 1
  • the problem of QuakeLabeler used in the Ubuntu

    the problem of QuakeLabeler used in the Ubuntu

    After I create the python environment needed by QuakeLabeler and install it in my Ubuntu computer, there was the problem, "AttributeError: 'numpy.int64' object has no attribute 'split'" when I execute QuakeLabeler (quakelabeler) in the terminal.

    “”“ Traceback (most recent call last): File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 33, in sys.exit(load_entry_point('QuakeLabeler', 'console_scripts', 'QuakeLabeler')()) File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 25, in importlib_load_entry_point return next(matches).load() File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/metadata.py", line 77, in load module = import_module(match.group('module')) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 975, in _find_and_load_unlocked File "", line 671, in _load_unlocked File "", line 843, in exec_module File "", line 219, in _call_with_frames_removed File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/init.py", line 5, in from .classes import QuakeLabeler, Interactive, CustomSamples, QueryArrival, BuiltInCatalog, MergeMetadata, GlobalMaps File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/classes.py", line 35, in from obspy.core.utcdatetime import UTCDateTime File "/home/xxx/.local/lib/python3.8/site-packages/obspy/init.py", line 39, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/init.py", line 124, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/utcdatetime.py", line 27, in from obspy.core.util.deprecation_helpers import ObsPyDeprecationWarning File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/init.py", line 27, in from obspy.core.util.base import (ALL_MODULES, DEFAULT_MODULES, File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/base.py", line 36, in from obspy.core.util.misc import to_int_or_zero, buffered_load_entry_point File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/misc.py", line 214, in loadtxt(np.array([0]), ndmin=1) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 1086, in loadtxt ncols = len(usecols or split_line(first_line)) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 977, in split_line line = line.split(comment, 1)[0] AttributeError: 'numpy.int64' object has no attribute 'split' "”"

    opened by Damin1909 3
Owner
Hao Mai
Hao Mai
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022