🛠️ Tools for Transformers compression using Lightning ⚡

Overview

Hits

Bert-squeeze

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

It gathers a non-exhaustive list of techniques such as distillation, pruning, quantization, early-exiting. The repo is written using PyTorch Lightning and Transformers.

About the project

As a heavy user of transformer-based models (which are truly amazing from my point of view) I always struggled to put those heavy models in production while having a decent inference speed. There are of course a bunch of existing libraries to optimize and compress transformer-based models (ONNX , distiller, compressors , KD_Lib, ... ).
I started this project because of the need to reduce the latency of models integrating transformers as subcomponents. For this reason, this project aims at providing implementations to train various transformer-based models (and others) using PyTorch Lightning but also to distill, prune, and quantize models.
I chose to write this repo with Lightning because of its growing trend, its flexibility, and the very few repositories using it. It currently only handles sequence classification models, but support for other tasks and custom architectures is planned.

Installation

First download the repository:

git clone https://github.com/JulesBelveze/bert-squeeze.git

and then install dependencies using poetry:

poetry install

You are all set!

Quickstarts

You can find a bunch of already prepared configurations under the examples folder. Just choose the one you need and run the following:

python3 -m bert-squeeze.main -cp=examples -cn=wanted_config

Disclaimer: I have not extensively tested all procedures and thus do not guarantee the performance of every implemented method.

Concepts

Transformers

If you never heard of it then I can only recommend you to read this amazing blog post and if you want to dig deeper there is this awesome lecture was given by Stanford available here.

Distillation

The idea of distillation is to train a small network to mimic a big network by trying to replicate its outputs. The repository provides the ability to transfer knowledge from any model to any other (if you need a model that is not within the models folder just write your own).

The repository also provides the possibility to perform soft-distillation or hard-distillation on an unlabeled dataset. In the soft case, we use the probabilities of the teacher as a target. In the hard one, we assume that the teacher's predictions are the actual label.

You can find these implementations under the distillation/ folder.

Quantization

Neural network quantization is the process of reducing the weights precision in the neural network. The repo has two callbacks one for dynamic quantization and one for quantization-aware training (using the Lightning callback) .

You can find those implementations under the utils/callbacks/ folder.

Pruning

Pruning neural networks consist of removing weights from trained models to compress them. This repo features various pruning implementations and methods such as head-pruning, layer dropping, and weights dropping.

You can find those implementations under the utils/callbacks/ folder.

Contributions and questions

If you are missing a feature that could be relevant to this repo, or a bug that you noticed feel free to open a PR or open an issue. As you can see in the roadmap there are a bunch more features to come 😃

Also, if you have any questions or suggestions feel free to ask!

References

  1. Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
  2. stanfordonline (2021) Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 9 - Self- Attention and Transformers. [online video] Available at: https://www.youtube.com/watch?v=ptuGllU5SQQ
  3. Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Jamie Brew (2019). HuggingFace's Transformers: State-of-the-art Natural Language Processing
  4. Hassan Sajjad and Fahim Dalvi and Nadir Durrani and Preslav Nakov (2020). Poor Man's BERT Smaller and Faster Transformer Models
  5. Angela Fan and Edouard Grave and Armand Joulin (2019). Reducing Transformer Depth on Demand with Structured Dropout
  6. Paul Michel and Omer Levy and Graham Neubig (2019). Are Sixteen Heads Really Better than One?
  7. Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang (2020). Language-agnostic BERT Sentence Embedding
Owner
Jules Belveze
AI craftsman | NLP | MLOps
Jules Belveze
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023