Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Overview

LQVAE-separation

Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Paper

Samples

GT Compressed Separated
Drums GT Compressed Drums Separated Drums
Bass GT Compressed Bass Separated Bass
Mix GT Compressed Mix Separated Mix

The separation is performed on a x64 compressed latent domain. The results can be upsampled via Jukebox upsamplers in order to increment perceptive quality (WIP).

Install

Install the conda package manager from https://docs.conda.io/en/latest/miniconda.html

conda create --name lqvae-separation python=3.7.5
conda activate lqvae-separation
pip install mpi4py==3.0.3
pip install ffmpeg-python==0.2.0
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install -r requirements.txt
pip install -e .

Checkpoints

  • Enter inside script/ folder and create the folder checkpoints/ and the folder results/.
  • Download the checkpoints contained in this Google Drive folder and put them inside checkpoints/

Separation with checkpoints

  • Call the following in order to perform bs separations of 3 seconds starting from second shift of the mixture created with the sources in path_1 and path_2. The sources must be WAV files sampled at 22kHz.
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs
    
  • The default value for bs is 64, and can be handled by an RTX3080 with 16 GB of VRAM. Lower the value if you get CUDA: out of memory.

Training

LQ-VAE

  • The vqvae/vqvae.pyfile of Jukebox has been modified in order to include the linearization loss of the LQ-VAE (it is computed at all levels of the hierarchical VQ-VAE but we only care of the topmost level given that we perform separation there). One can train a new LQ-VAE on custom data (here data/train for train and data/test for test) by running the following from the root of the project
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae --sample_length=131072 --bs=8 
--audio_files_dir=data/train/ --labels=False --train --test --aug_shift --aug_blend --name=lq_vae --test_audio_files_dir=data/test
  • The trained model uses the vqvae hyperparameters in hparams.py so if you want to change the levels / downsampling factors you have to modify them there.
  • The only constraint for training the LQ-VAE is to use an even number for the batch size, given its use of pairs in the loss.
  • Given that L_lin enforces the sum operation on the latent domain, you can use the data of both sources together (or any other audio data).
  • Checkpoints are save in logs/lq_vae (lq_vae is the name parameter).

Priors

  • After training the LQ-VAE, train two priors on two different classes by calling
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae,small_prior,all_fp16,cpu_ema --name=pior_source
 --audio_files_dir=data/source/train --test_audio_files_dir=data/source/test --labels=False --train --test --aug_shift
  --aug_blend --prior --levels=3 --level=2 --weight_decay=0.01 --save_iters=1000 --min_duration=24 --sample_length=1048576 
  --bs=16 --n_ctx=8192 --sample=True --sample_iters=1000 --restore_vqvae=logs/lq_vae/checkpoint_lq_vae.pth.tar
  • Here the data of the source is located in data/source/train and data/source/test and we assume the LQ-VAE has 3 levels (topmost level = 2).
  • The Transformer model is defined by the parameters of small_prior in hparams.py and uses a context of n_ctx=8192 codes.
  • The checkpoint path of the LQ-VAE trained in the previous step must be passed to --restore_vqvae
  • Checkpoints are save in logs/pior_source (pior_source is the name parameter).

Codebook sums

  • Before separation, the sums between all codes must be computed using the LQ-VAE. This can be done using the codebook_precalc.py in the script folder:
PYTHONPATH=.. python codebook_precalc.py --save_path=checkpoints/codebook_sum_precalc.pt 
--restore_vqvae=../logs/lq_vae/checkpoint_lq_vae.pth.tar` --raw_to_tokens=64 --l_bins=2048
--sample_rate=22050 --alpha=[0.5, 0.5] --downs_t=(2, 2, 2) --commit=1.0 --emb_width=64

Separation with trained checkpoints

  • Trained checkpoints can be given to bayesian_inference.py as following:
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs --restore_vqvae=checkpoints/checkpoint_step_60001_latent.pth.tar
    --restore_priors 'checkpoints/checkpoint_drums_22050_latent_78_19k.pth.tar' checkpoints/checkpoint_latest.pth.tar' --sum_codebook=checkpoints/codebook_precalc_22050_latent.pt
    
  • restore_priors accepts two paths to the first and second prior checkpoints.

Evaluation

  • In order to evaluate the pre-trained checkpoints, run bayesian_test.py after you have put the full Slakh drums and bass validation split inside data/bass/validation and data/drums/validation.

Future work

  • training of upsamplers for increasing the quality of the separations
  • better rejection sampling method (maybe use verifiers as in https://arxiv.org/abs/2110.14168)

Citations

If you find the code useful for your research, please consider citing

@article{mancusi2021unsupervised,
  title={Unsupervised Source Separation via Bayesian Inference in the Latent Domain},
  author={Mancusi, Michele and Postolache, Emilian and Fumero, Marco and Santilli, Andrea and Cosmo, Luca and Rodol{\`a}, Emanuele},
  journal={arXiv preprint arXiv:2110.05313},
  year={2021}
}

as well as the Jukebox baseline:

  • Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341.
Owner
Michele Mancusi
PhD student in Computer Science @ La Sapienza University of Rome, MSc in Quantum Information @ La Sapienza University of Rome
Michele Mancusi
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022