This repository is all about spending some time the with the original problem posed by Minsky and Papert

Overview

The Original Problem

Computer Vision has a very interesting history. It's roots really go all the way back to the beginning of computing and Artifical Intelligence. In these early days, it was unknown just how easy or difficult it would be to recreate the function of the human visual system. A great example of this is the 1966 MIT Summer Vision Project. Marvin Minsky and Seymour Papert, co-directors of the MIT AI Labratory, begun the summer with some ambitious goals:

Minsky and Papert assigned Gerald Sussman, an MIT undergraduate studunt as project lead, and setup specific goals for the group around recognizing specific objects in images, and seperating these objects from their backgrounds.

Just how hard is it to acheive the goals Minsky and Papert laid out? How has the field of computer vision advance since that summer? Are these tasks trivial now, 50+ years later? Do we understand how the human visual system works? Just how hard is computer vision and how far have we come?

This Repository

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

The repository is broadly divided into two areas: notebooks and a programming challenge. The programming challenge is described in more detail below, and closely follows the goals setup by Minsky and Papert back in 1966. The notebooks are here to give you some help along the way.

Notebooks

Section Notebook Required Reading/Viewing Additional Reading/Viewing Code Developed
1 The Original Problem The Summer Vision Project - -
2 Robert's Cross Only Abstact and Pages 25-27 - Machine perception of 3d solids - convert_to_grayscale, roberts_cross
3 Image Filtering How Blurs & Filters Work - Computerphile - make_gaussian_kernel, filter_2d
4 The Sobel–Feldman Operator Finding the Edges (Sobel Operator) - Computerphile History of Sobel -
5 The Hough Transform [Part 1] Pattern classification Section 9.2.3, Bubble Chamber Video -
6 The Hough Transform [Part 2] How the Hough Transform was Invented Use of the Hough transformation to detect lines and curves in pictures. HoughAccumulator

Viewing Notebooks

The links in the table above take you to externally hosted HTML exports of the notebooks. This works pretty well, except html won't render embedded slide shows unfortunately. The best way to view the notebooks is to clone this repo and run them yourself! Checkout the setup instructions below.

Animations

The notebooks in this repository make frequent use of gif animations. These files are pretty large, so we don't store them on github, and they unfortunately won't show up when viewing the notebooks via github. The ideal way to view the notebooks is to clone the repo, download the videos, and use the recommended jupyterthemes below. Instructions on downloading videos are below.

Note on Launching the Jupyter Notebooks

To properly view the images and animations, please launch your jupyter notebook from the root directory of this repository.

Programming Challenge

Instructions

  • Write a method classify.py that takes in an image and returns a prediction - ball, brick, or cylinder.
  • An example script in located in challenge/sample_student.py
  • Your script will be automatically evaluated on a set of test images.
  • The testing images are quite similar to the training images, and organized into the same difficulty categories.
  • You are allowed 10 submissions to the evaluation server, which will provide immediate feedback.

The Data

Easy Examples

Grading

Following the progression set out the MIT the summer project, we'll start with easy images, and move to more difficult image with more complex backgrounds as we progress. For each difficulty level, we will compute the average accuracy of your classifier. We will then compute an average overall accuracy, weighting easier examples more:

overall_accuracy = 0.5*accuracy_easy 
                 + 0.2*accuracy_medium_1 
                 + 0.2*accuracy_medium_2 
                 + 0.1*accuracy_hard 
Overall Accuracy Points
>= 0.6 10/10
0.55 <= a < 0.6 9/10
0.5 <= a < 0.55 8/10
0.45 <= a < 0.5 7/10
0.40 <= a < 0.45 6/10
0.35 <= a < 0.40 5/10
a < 0.35 4/10
Non-running code 0/10

A quick note on difficulty

Depending on your background, this challenge may feel a bit like getting thrown into the deep end. If it feels a bit daunting - that's ok! Half of the purpose of this assignement is to help you develop an appreciation for why computer vision is so hard. As you may have already guessed, Misky, Sussman, and Papert did not reach their summer goals - and I'm not expecting you to either. The grading table above reflects this - for example, if you're able to get 90% accuracy on the easy examples, and simply guess randomly on the rest of the examples, you'll earn 10/10 points.

Setup

The Python 3 Anaconda Distribution is the easiest way to get going with the notebooks and code presented here.

(Optional) You may want to create a virtual environment for this repository:

conda create -n cv python=3 
source activate cv

You'll need to install the jupyter notebook to run the notebooks:

conda install jupyter

# You may also want to install nb_conda (Enables some nice things like change virtual environments within the notebook)
conda install nb_conda

This repository requires the installation of a few extra packages, you can install them all at once with:

pip install -r requirements.txt

(Optional) jupyterthemes can be nice when presenting notebooks, as it offers some cleaner visual themes than the stock notebook, and makes it easy to adjust the default font size for code, markdown, etc. You can install with pip:

pip install jupyterthemes

Recommend jupyter them for presenting these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=20 -tfs=20 -ofs=20 -dfs=20

Recommend jupyter them for viewing these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=14 -tfs=14 -ofs=14 -dfs=14

Downloading Data

For larger files such as data and videos, I've provided download scripts to download these files from welchlabs.io. These files can be pretty big, so you may want to grab a cup of your favorite beverage to enjoy while downloading. The script can be run from within the jupyter notebooks or from the terminal:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/data/data.zip

Alternatively, you can download download data manually, unzip and place in this directory.

Downloading Videos

Run the script below or call it from the notebooks:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/videos.zip

Alternatively, you can download download videos manually, unzip and place in this directory.

Owner
Jaissruti Nanthakumar
Master's in Computer Science | University of North Carolina at Charlotte
Jaissruti Nanthakumar
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022