ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

Overview

PENet: Precise and Efficient Depth Completion

This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Efficient Image Guided Depth Completion", developed by Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong at Zhejiang University and Huawei Shanghai.

Create a new issue for any code-related questions. Feel free to direct me as well at [email protected] for any paper-related questions.

Results

  • The proposed full model ranks 1st in the KITTI depth completion online leaderboard at the time of submission.
  • It infers much faster than most of the top ranked methods.
  • Both ENet and PENet can be trained thoroughly on 2x11G GPU.
  • Our network is trained with the KITTI dataset alone, not pretrained on Cityscapes or other similar driving dataset (either synthetic or real).

Method

A Strong Two-branch Backbone

Revisiting the popular two-branch architecture

The two-branch backbone is designed to thoroughly exploit color-dominant and depth-dominant information from their respective branches and make the fusion of two modalities effective. Note that it is the depth prediction result obtained from the color-dominant branch that is input to the depth-dominant branch, not a guidance map like those in DeepLiDAR and FusionNet.

Geometric convolutional Layer

To encode 3D geometric information, it simply augments a conventional convolutional layer via concatenating a 3D position map to the layer’s input.

Dilated and Accelerated CSPN++

Dilated CSPN

we introduce a dilation strategy similar to the well known dilated convolutions to enlarge the propagation neighborhoods.

Accelerated CSPN

we design an implementation that makes the propagation from each neighbor truly parallel, which greatly accelerates the propagation procedure.

Contents

  1. Dependency
  2. Data
  3. Trained Models
  4. Commands
  5. Citation

Dependency

Our released implementation is tested on.

  • Ubuntu 16.04
  • Python 3.7.4 (Anaconda 2019.10)
  • PyTorch 1.3.1 / torchvision 0.4.2
  • NVIDIA CUDA 10.0.130
  • 4x NVIDIA GTX 2080 Ti GPUs
pip install numpy matplotlib Pillow
pip install scikit-image
pip install opencv-contrib-python==3.4.2.17

Data

  • Download the KITTI Depth Dataset and KITTI Raw Dataset from their websites. The overall data directory is structured as follows:
├── kitti_depth
|   ├── depth
|   |   ├──data_depth_annotated
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_velodyne
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_selection
|   |   |  ├── test_depth_completion_anonymous
|   |   |  |── test_depth_prediction_anonymous
|   |   |  ├── val_selection_cropped
├── kitti_raw
|   ├── 2011_09_26
|   ├── 2011_09_28
|   ├── 2011_09_29
|   ├── 2011_09_30
|   ├── 2011_10_03

Trained Models

Download our pre-trained models:

Commands

A complete list of training options is available with

python main.py -h

Training

Training Pipeline

Here we adopt a multi-stage training strategy to train the backbone, DA-CSPN++, and the full model progressively. However, end-to-end training is feasible as well.

  1. Train ENet (Part Ⅰ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -n e
# -b for batch size
# -n for network model
  1. Train DA-CSPN++ (Part Ⅱ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -f -n pe --resume [enet-checkpoint-path]
# -f for freezing the parameters in the backbone
# --resume for initializing the parameters from the checkpoint
  1. Train PENet (Part Ⅲ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 10 -n pe -he 160 -w 576 --resume [penet-checkpoint-path]
# -he, -w for the image size after random cropping

Evalution

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n p --evaluate [enet-checkpoint-path]
CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path]
# test the trained model on the val_selection_cropped data

Test

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path] --test
# generate and save results of the trained model on the test_depth_completion_anonymous data

Citation

If you use our code or method in your work, please cite the following:

@article{hu2020PENet,
	title={Towards Precise and Efficient Image Guided Depth Completion},
	author={Hu, Mu and Wang, Shuling and Li, Bin and Ning, Shiyu and Fan, Li and Gong, Xiaojin},
	booktitle={ICRA},
	year={2021}
}

Related Repositories

The original code framework is rendered from "Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera". It is developed by Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman at MIT.

The part of CoordConv is rendered from "An intriguing failing of convolutional neural networks and the CoordConv".

G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022