A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

Overview

ssnt-loss

ℹ️ This is a WIP project. the implementation is still being tested.

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction" https://arxiv.org/abs/1609.08194.

Usage

There are two versions, a normal version and a memory efficient version. They should give the same output, please inform me if they don't.

>> target_mask = targets.ne(pad) # (B, T) >>> targets = targets[target_mask] # (T_flat,) >>> log_probs = log_probs[target_mask] # (T_flat, S, V) Args: log_probs (Tensor): Word prediction log-probs, should be output of log_softmax. tensor with shape (T_flat, S, V) where T_flat is the summation of all target lengths, S is the maximum number of input frames and V is the vocabulary of labels. targets (Tensor): Tensor with shape (T_flat,) representing the reference target labels for all samples in the minibatch. log_p_choose (Tensor): emission log-probs, should be output of F.logsigmoid. tensor with shape (T_flat, S) where T_flat is the summation of all target lengths, S is the maximum number of input frames. source_lengths (Tensor): Tensor with shape (N,) representing the number of frames for each sample in the minibatch. target_lengths (Tensor): Tensor with shape (N,) representing the length of the transcription for each sample in the minibatch. neg_inf (float, optional): The constant representing -inf used for masking. Default: -1e4 reduction (string, optional): Specifies reduction. suppoerts mean / sum. Default: None. """">
def ssnt_loss_mem(
    log_probs: Tensor,
    targets: Tensor,
    log_p_choose: Tensor,
    source_lengths: Tensor,
    target_lengths: Tensor,
    neg_inf: float = -1e4,
    reduction="mean",
):
    """The memory efficient implementation concatenates along the targets
    dimension to reduce wasted computation on padding positions.

    Assuming the summation of all targets in the batch is T_flat, then
    the original B x T x ... tensor is reduced to T_flat x ...

    The input tensors can be obtained by using target mask:
    Example:
        >>> target_mask = targets.ne(pad)   # (B, T)
        >>> targets = targets[target_mask]  # (T_flat,)
        >>> log_probs = log_probs[target_mask]  # (T_flat, S, V)

    Args:
        log_probs (Tensor): Word prediction log-probs, should be output of log_softmax.
            tensor with shape (T_flat, S, V)
            where T_flat is the summation of all target lengths,
            S is the maximum number of input frames and V is
            the vocabulary of labels.
        targets (Tensor): Tensor with shape (T_flat,) representing the
            reference target labels for all samples in the minibatch.
        log_p_choose (Tensor): emission log-probs, should be output of F.logsigmoid.
            tensor with shape (T_flat, S)
            where T_flat is the summation of all target lengths,
            S is the maximum number of input frames.
        source_lengths (Tensor): Tensor with shape (N,) representing the
            number of frames for each sample in the minibatch.
        target_lengths (Tensor): Tensor with shape (N,) representing the
            length of the transcription for each sample in the minibatch.
        neg_inf (float, optional): The constant representing -inf used for masking.
            Default: -1e4
        reduction (string, optional): Specifies reduction. suppoerts mean / sum.
            Default: None.
    """

Minimal example

import torch
import torch.nn as nn
import torch.nn.functional as F
from ssnt_loss import ssnt_loss_mem, lengths_to_padding_mask
B, S, H, T, V = 2, 100, 256, 10, 2000

# model
transcriber = nn.LSTM(input_size=H, hidden_size=H, num_layers=1).cuda()
predictor = nn.LSTM(input_size=H, hidden_size=H, num_layers=1).cuda()
joiner_trans = nn.Linear(H, V, bias=False).cuda()
joiner_alpha = nn.Sequential(
    nn.Linear(H, 1, bias=True),
    nn.Tanh()
).cuda()

# inputs
src_embed = torch.rand(B, S, H).cuda().requires_grad_()
tgt_embed = torch.rand(B, T, H).cuda().requires_grad_()
targets = torch.randint(0, V, (B, T)).cuda()
adjust = lambda x, goal: x * goal // x.max()
source_lengths = adjust(torch.randint(1, S+1, (B,)).cuda(), S)
target_lengths = adjust(torch.randint(1, T+1, (B,)).cuda(), T)

# forward
src_feats, (h1, c1) = transcriber(src_embed.transpose(1, 0))
tgt_feats, (h2, c2) = predictor(tgt_embed.transpose(1, 0))

# memory efficient joint
mask = ~lengths_to_padding_mask(target_lengths)
lattice = F.relu(
    src_feats.transpose(0, 1).unsqueeze(1) + tgt_feats.transpose(0, 1).unsqueeze(2)
)[mask]
log_alpha = F.logsigmoid(joiner_alpha(lattice)).squeeze(-1)
lattice = joiner_trans(lattice).log_softmax(-1)

# normal ssnt loss
loss = ssnt_loss_mem(
    lattice,
    targets[mask],
    log_alpha,
    source_lengths=source_lengths,
    target_lengths=target_lengths,
    reduction="sum"
) / (B*T)
loss.backward()
print(loss.item())

Note

This implementation is based on the simplifying derivation proposed for monotonic attention, where they use parallelized cumsum and cumprod to compute the alignment. Based on the similarity of SSNT and monotonic attention, we can infer that the forward variable alpha(i,j) can be computed similarly.

Feel free to contact me if there are bugs in the code.

Reference

Owner
張致強
張致強
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022