[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Overview

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Official Pytorch implementation of Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding (AAAI 2022).

Paper is at https://arxiv.org/pdf/2109.04872.pdf.

Paper explanation in Zhihu (in Chinese) is at https://zhuanlan.zhihu.com/p/446203594.

Abstract

Temporal grounding aims to localize a video moment which is semantically aligned with a given natural language query. Existing methods typically apply a detection or regression pipeline on the fused representation with the research focus on designing complicated prediction heads or fusion strategies. Instead, from a perspective on temporal grounding as a metric-learning problem, we present a Mutual Matching Network (MMN), to directly model the similarity between language queries and video moments in a joint embedding space. This new metric-learning framework enables fully exploiting negative samples from two new aspects: constructing negative cross-modal pairs in a mutual matching scheme and mining negative pairs across different videos. These new negative samples could enhance the joint representation learning of two modalities via cross-modal mutual matching to maximize their mutual information. Experiments show that our MMN achieves highly competitive performance compared with the state-of-the-art methods on four video grounding benchmarks. Based on MMN, we present a winner solution for the HC-STVG challenge of the 3rd PIC workshop. This suggests that metric learning is still a promising method for temporal grounding via capturing the essential cross-modal correlation in a joint embedding space.

Updates

Dec, 2021 - We uploaded the code and trained weights for Charades-STA, ActivityNet-Captions and TACoS datasets.

Todo: The code for spatio-temporal video grounding (HC-STVG dataset) will be available soon.

Datasets

  • Download the video feature and the groundtruth provided by 2D-TAN.
  • Extract and put them in a dataset folder in the same directory as train_net.py. For configurations of feature/groundtruth's paths, please refer to ./mmn/config/paths_catalog.py. (ann_file is annotation, feat_file is the video feature)

Dependencies

Our code is developed on the third-party implementation of 2D-TAN, so we have similar dependencies with it, such as:

yacs h5py terminaltables tqdm pytorch transformers 

Quick Start

We provide scripts for simplifying training and inference. For training our model, we provide a script for each dataset (e.g., ./scripts/tacos_train.sh). For evaluating the performance, we provide ./scripts/eval.sh.

For example, for training model in TACoS dataset in tacos_train.sh, we need to select the right config in config and decide the GPU by yourself in gpus (gpu id in your server) and gpun (total number of gpus).

# find all configs in configs/
config=pool_tacos_128x128_k5l8
# set your gpu id
gpus=0,1
# number of gpus
gpun=2
# please modify it with different value (e.g., 127.0.0.2, 29502) when you run multi mmn task on the same machine
master_addr=127.0.0.3
master_port=29511

Similarly, to evaluate the model, just change the information in eval.sh. Our trained weights for three datasets are in the Google Drive.

Citation

If you find our code useful, please generously cite our paper. (AAAI version bibtex will be updated later)

@article{DBLP:journals/corr/abs-2109-04872,
  author    = {Zhenzhi Wang and
               Limin Wang and
               Tao Wu and
               Tianhao Li and
               Gangshan Wu},
  title     = {Negative Sample Matters: {A} Renaissance of Metric Learning for Temporal
               Grounding},
  journal   = {CoRR},
  volume    = {abs/2109.04872},
  year      = {2021}
}

Contact

For any question, please raise an issue (preferred) or contact

Zhenzhi Wang: [email protected]

Acknowledgement

We appreciate 2D-TAN for video feature and configurations, and the third-party implementation of 2D-TAN for its implementation with DistributedDataParallel. Disclaimer: the performance gain of this third-party implementation is due to a tiny mistake of adding val set into training, yet our reproduced result is similar to the reported result in 2D-TAN paper.

Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023