Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

Overview

🚀 If it helps you, click a star!

Update log

  • 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-uploaded code
  • 2021.04.09 Re-upload the code, "V1 Commit"
  • 2021.04.22 update torch distributed training
  • Ongoing update .....

1. Display (Cityscapes)

  • Using model DDRNet 1525 test sets, official MIOU =78.4069%
Average results
Class results1
Class results2
Class results3
  • Comparison of the original and predicted images
origin
label
predict

2. Install

pip install -r requirements.txt
Experimental environment:

  • Ubuntu 16.04 Nvidia-Cards >= 1
  • python==3.6.5
  • See Dependency Installation Package for details in requirement.txt

3. Model

All the modeling is done in builders/model_builder.py

  • FCN
  • FCN_ResNet
  • SegNet
  • UNet
  • BiSeNet
  • BiSeNetV2
  • PSPNet
  • DeepLabv3_plus
  • HRNet
  • DDRNet
Model Backbone Val mIoU Test mIoU Imagenet Pretrain Pretrained Model
PSPNet ResNet 50 76.54% - PSPNet
DeeplabV3+ ResNet 50 77.78% - DeeplabV3+
DDRNet23_slim - DDRNet23_slim_imagenet
DDRNet23 - DDRNet23_imagenet
DDRNet39 - 79.63% - DDRNet39_imagenet DDRNet39
Updating more model.......

4. Data preprocessing

This project enables you to expose data sets: CityscapesISPRS
The data set is uploaded later .....
Cityscapes data set preparation is shown here:

4.1 Download the dataset

Download the dataset from the link on the website, You can get *leftImg8bit.png suffix of original image under folder leftImg8bit, a) *color.pngb) *labelIds.pngc) *instanceIds.png suffix of fine labeled image under folder gtFine.

*leftImg8bit.png          : the origin picture
a) *color.png             : the class is encoded by its color
b) *labelIds.png          : the class is encoded by its ID
c) *instanceIds.png       : the class and the instance are encoded by an instance ID

4.2 Onehot encoding of label image

The real label gray scale image Onehot encoding used by the semantic segmentation task is 0-18, so the label needs to be encoded. Using scripts dataset/cityscapes/cityscapes_scripts/process_cityscapes.py to process the image and get the result *labelTrainIds.png. process_cityscapes.py usage: Modify 486 lines `Cityscapes_path'is the path to store your own data.

  • Comparison of original image, color label image and gray label image (0-18)
***_leftImg8bit
***_gtFine_color
***_gtFine_labelTrainIds
  • Local storage path display /data/open_data/cityscapes/:
data
  |--open_data
        |--cityscapes
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******

4.3 Generate image path

  • Generate a txt containing the image path
    Use script dataset/generate_txt.py to generate the path txt file containing the original image and labels. A total of 3 txt files will be generated: cityscapes_train_list.txtcityscapes_val_list.txtcityscapes_test_list.txt, and copy the three files to the dataset root directory.
data
  |--open_data
        |--cityscapes
               |--cityscapes_train_list.txt
               |--cityscapes_val_list.txt
               |--cityscapes_test_list.txt
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
  • The contents of the txt are shown as follows:
leftImg8bit/train/cologne/cologne_000000_000019_leftImg8bit.png gtFine/train/cologne/cologne_000000_000019_gtFine_labelTrainIds.png
leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png
..............
  • The format of the txt are shown as follows:
origin image path + the separator '\t' + label path +  the separator '\n'

TODO.....

5. How to train

sh train.sh

5.1 Parameters

python -m torch.distributed.launch --nproc_per_node=2 \
                train.py --model PSPNet_res50 --out_stride 8 \
                --max_epochs 200 --val_epochs 20 --batch_size 4 --lr 0.01 --optim sgd --loss ProbOhemCrossEntropy2d \
                --base_size 768 --crop_size 768  --tile_hw_size 768,768 \
                --root '/data/open_data' --dataset cityscapes --gpus_id 1,2

6. How to validate

sh predict.sh
Comments
  • size doesn't match error when run the train.py

    size doesn't match error when run the train.py

    sorry to disturb you, when i run train.py, it goes wrong, and i print the size of the two tensor, there are same, i can't find the resolution, how to solve it? `******* Begining traing *******


    Epoch 0/300: 0%| | 0/909 [00:00<?, ?it/s]/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py:1350: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.") Traceback (most recent call last): File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 415, in train_model(args) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 293, in train_model lossTr, lr = train(args, trainLoader, model, criteria, optimizer, epoch) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 117, in train loss = criterion(output, labels) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/home/yeluyue/dl/bottle_Segmentation/tools/loss.py", line 27, in forward return self.loss(outputs, targets) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/loss.py", line 498, in forward return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py", line 2047, in binary_cross_entropy new_size = _infer_size(target.size(), weight.size()) RuntimeError: The size of tensor a (512) must match the size of tensor b (2) at non-singleton dimension 2`

    opened by lj107024 4
  • AttributeError in HRNet

    AttributeError in HRNet

    When I run ./model/HRNet.py on Ubuntu 18.04, torch 1.8.0+cu111, the error raise as follows,

    /home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py:329: DeprecationWarning: np.int is a deprecated alias for the builtin int. To silence this warning, use int by itself. Doing this will not modify any behavior and is safe. When replacing np.int, you may wish to use e.g. np.int64 or np.int32 to specify the precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations last_inp_channels = np.int(np.sum(pre_stage_channels)) Traceback (most recent call last): File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 520, in summary(model, (3, 512, 512), device="cpu") File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 72, in summary model(*x) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 447, in forward y_list = self.stage2(x_list) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 893, in _call_impl hook_result = hook(self, input, result) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 19, in hook summary[m_key]["input_shape"] = list(input[0].size()) AttributeError: 'list' object has no attribute 'size'

    opened by rrryan2016 2
  • bug about generate_txt.py

    bug about generate_txt.py

    in line 26 filename_gt = filename.replace('leftImg8bit', 'gtFine') should change to filename_gt = filename.replace('leftImg8bit', 'gtFine').replace('.png','_labelTrainIds.png') to produce the format of leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png

    the result will be leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine.png before. And the program wont find the file.

    if I am wrong, plz tell me. Best wishes.

    opened by songzijiang 2
  • 使用ENet模型,在train时正常,在pridict时会出现超出内存。

    使用ENet模型,在train时正常,在pridict时会出现超出内存。

    在train时正常,在pridict时会出现: RuntimeError.CUDA out of memory. Tried to allocate 188.00 MiB (GPU 0; 6.00 GiB total capacity; 4.21 GiB already allocated; 63.85 MiB free; 81.86 MiB cached) 使用predict_sliding时会出现: 发生异常: TypeError init() got an unexpected keyword argument 'std' 请问怎么解决?

    opened by FelixJiao 2
  • Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bumps opencv-python from 4.1.0.25 to 4.2.0.32.

    Release notes

    Sourced from opencv-python's releases.

    4.2.0.32

    OpenCV version 4.2.0.

    Changes:

    • macOS environment updated from xcode8.3 to xcode 9.4
    • macOS uses now Qt 5 instead of Qt 4
    • Nasm version updated to Docker containers
    • multibuild updated

    Fixes:

    • don't use deprecated brew tap-pin, instead refer to the full package name when installing #267
    • replace get_config_var() with get_config_vars() in setup.py #274
    • add workaround for DLL errors in Windows Server #264

    4.1.2.30

    OpenCV version 4.1.2.

    Changes:

    • Python 3.8 builds added to the build matrix
    • Support for Python 3.4 builds dropped (Python 3.4 is in EOL)
    • multibuild updated
    • minor build logic changes
    • Docker images rebuilt

    Notes:

    Please note that Python 2.7 enters into EOL phase in January 2020. opencv-python Python 2.7 wheels won't be provided after that.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bumps opencv-python from 4.1.0.25 to 4.1.1.26.

    Release notes

    Sourced from opencv-python's releases.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    • FFmpeg has been compiled with https support on Linux builds #229
    • CI build logic related changes #197, #227, #228
    • Custom libjepg-turbo removed because it's provided by OpenCV #231
    • 64-bit Qt builds are now smaller #236
    • Custom builds should be now rather easy to do locally #235:
      1. Clone this repository
      2. Optional: set up ENABLE_CONTRIB and ENABLE_HEADLESS environment variables to 1 if needed
      3. Optional: add additional Cmake arguments to CMAKE_ARGS environment variable
      4. Run python setup.py bdist_wheel
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump numpy from 1.15.1 to 1.22.0

    Bump numpy from 1.15.1 to 1.22.0

    Bumps numpy from 1.15.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v1.0.0)
Owner
Deeachain
Graduate students from outer space
Deeachain
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022