Neural models of common sense. 🤖

Related tags

Deep Learningrainbow
Overview

Unicorn on Rainbow

Neural models of common sense.

This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. Unicorn on Rainbow introduces a new evaluation, the cost equivalent curve, which compares models in terms of their cost-benefit trade offs. Using cost equivalent curves, we conduct a large-scale empirical study of intermediate-task transfer for common sense on a new benchmark collection of commonsense reasoning datasets, Rainbow. With findings from this study, we create a new state-of-the-art model for commonsense reasoning: Unicorn.

Jump to a section of the readme to accomplish different goals:

  • Rainbow: Read about and download data for Rainbow, our new commonsense reasoning benchmark.
  • Unicorn: Get up and running with Unicorn, our state-of-the-art commonsense reasoning model.
  • Cost Equivalent Curves: Learn how to generate cost equivalent curves for your own predictions.
  • Experimental Results: Download and analyze the results from our hundreds of experiments.
  • Setup: Get set up to run the code in this repository.
  • Quickstart: Run the code in this repo.
  • Citation: Cite the Unicorn on Rainbow paper.
  • Contact: Reach out with questions or comments.

Note: This repository is intended for research. There is no intention for ongoing maintenance.

Rainbow

Rainbow brings together six pre-existing commonsense reasoning benchmarks: aNLI, Cosmos QA, HellaSWAG, Physical IQa, Social IQa, and WinoGrande. These commonsense reasoning benchmarks span both social and physical common sense.

Note: Rainbow pins these datasets to specific versions. To make sure you're using the correct data, please download those versions below.

Getting the Data

Rainbow preprocesses all of the datasets into a text-to-text format for ease of modeling.

Alternatively, you can download the individual tasks and preprocess them yourself.

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

Submitting to the Leaderboard

If you develop a model for Rainbow, please feel free to submit to the leaderboard!

Unicorn

Unicorn (a UNIversal COmmonsense Reasoning Model) solves commonsense reasoning tasks in the text-to-text format. In principle, Unicorn may be trained on any NLP task, simply feed it text input and ask it to predict text output. Unicorn derives from T5, supercharging it for commonsense reasoning tasks and achieving state-of-the-art across a number of popular benchmarks, including Rainbow and CommonsenseQA.

To try Unicorn on your own data, first download the weights then fine-tune and evaluate it on your own data.

Downloading the Weights

To run Unicorn, you'll first need to download its weight files into a directory or path on Google Cloud. Using gsutil:

gsutil cp -r \
  gs://ai2-mosaic-public/projects/rainbow/v1.0/unicorns/lr-2e-3_batch-size-32
  $DST

Where $DST is the destination directory.

Reproducing our Results

In Unicorn on Rainbow, we trained different Unicorns that were first multitasked on Rainbow using different hyper-parameters. The checkpoint we've made available had the best performance most often. If you need the other checkpoints, please email the authors.

Cost Equivalent Curves

Cost equivalent curves compare the cost-benefit trade offs different techniques offer. In particular, cost equivalent curves plot the baseline and new technique's equivalent costs, or the costs where they achieve the same performance. For example, if the cost is measured as the number of examples and performance is measured by accuracy, then the cost equivalent curve shows how many examples the baseline needs to match the new technique's accuracy.

The plot_cost_equivalent_curves function in bin/create-multi-experiment-figures.py offers example code for how to create cost equivalent curves in Python.

Stay Tuned! We'll soon be releasing an easy-to-use, standalone package for creating cost equivalent curves. Check back here for it in the future.

Experimental Results

For Unicorn on Rainbow, we ran hundreds of experiments. We've made available the results from all those experiments in order to facilitate future research. For example, you may want those thousands of training curves to study hyper-parameter tuning or how loss evolves over training.

Among other things, you'll find:

  • predictions on dev from every checkpoint saved during training
  • training curves (training step vs. loss)
  • learning curves (dataset size vs. accuracy)
  • hyper-parameter tuning
  • all tables and figures from the paper
  • and more...

Our hope is that researchers can reuse this large collection of experiments to derive new practical and research insights.

Downloading the Results

Five collections of results are available:

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

NOTE: The learning curves experiments varied the number of training examples up to 16,000; however, CommonsenseQA has fewer than 16,000 training examples. Thus, for CommonsenseQA numbers higher than 9,741 are truncated to that size. This subtlety is taken care of by the data processing pipeline when the experiments are processed into the results tables, so it only affects rainbow-predictions.tar.gz and rainbow-experiments.tar.gz.

Replicating Our Analysis Pipeline

All the scripts to replicate our analysis pipeline reside in bin/. In order to run the scripts, you'll need to get set up for development.

The overall pipeline is as follows:

+----------------------------+
| rainbow-predictions.tar.gz |
+----------------------------+
              |
              | (bin/organize-experiments)
              V
+----------------------------+
| rainbow-experiments.tar.gz |
+----------------------------+
              |
              | (bin/generate-tables.py)
              V
  +------------------------+
  | rainbow-results.tar.gz |
  +------------------------+
         |         |
         |         | (bin/generate-latex-tables.py)
         |         V
         |     +-----------------------------+
         |     | rainbow-latex-tables.tar.gz |
         |     +-----------------------------+
         |
         | (bin/create-single-experiment-figures.py)
         | (bin/create-multi-experiment-figures.py)
         V
+------------------------+
| rainbow-figures.tar.gz |
+------------------------+

To run the pipeline, start by downloading rainbow-predictions.tar.gz (see Downloading the Results above).

Use bin/organize-experiments to produce rainbow-experiments.tar.gz:

$ tar -xf rainbow-predictions.tar.gz
$ bin/organize-experiments rainbow-predictions $DST

Where $DST is the desired destination directory (for example the current directory, .).

Use bin/generate-tables.py to produce rainbow-results.tar.gz:

$ bin/generate-tables.py rainbow-experiments rainbow-results

Use bin/create-single-experiment-figures.py and bin/create-multi-experiment-figures.py to create rainbow-figures.tar.gz:

$ bin/create-single-experiment-figures.py rainbow-results rainbow-figures/single-experiment
$ bin/create-multi-experiment-figures.py rainbow-results rainbow-figures/multi-experiment

And use bin/generate-latex-tables.py to produce rainbow-latex-tables.tar.gz:

$ bin/generate-latex-tables.py rainbow-results rainbow-latex-tables

All scripts except bin/organize-experiments are also self-documenting, so pass --help to any of them for more information.

Setup

This project requires Python 3.6 or above.

First, install the project's dependencies:

./bin/install

Next, make sure you have the following environment variables set:

  1. RAINBOW_DATASETS_DIR: The directory for storing all relevant datasets.
  2. RAINBOW_PREPROCESSED_DATASETS_DIR: The directory for storing the preprocessed dataset split files.
  3. RAINBOW_TFDS_DATASETS_DIR: The directory for storing the TFDS (tensorflow datasets) datasets.

Training requires TPUs. For training, all directories should point to Google Cloud Storage prefixes. Additionally, you'll need the following environment variables:

  1. PROJECT: Your Google Cloud project's ID.
  2. ZONE: Your Google Cloud virtual machine's zone.
  3. TPU_NAME: Your TPU's name.
  4. TPU_TOPOLOGY: Your TPU's topology.

Then, download and prepare all the datasets for text-to-text modeling:

$ ./bin/prepare.py --help
Usage: prepare.py [OPTIONS]

  Prepare all relevant datasets for text-to-text modeling.

  Download to and read the datasets from --src, transform them into CSVs
  suitable for text-to-text models, then write the results to --dst. Google
  storage paths are supported.

Options:
  --src TEXT        The directory to which to download all the relevant
                    datasets. Defaults to the RAINBOW_DATASETS_DIR environment
                    variable.  [required]
  --dst TEXT        The directory to which to write the preprocessed dataset
                    files. Defaults to the RAINBOW_PREPROCESSED_DATASETS_DIR
                    environment variable.  [required]
  --force-download  Force downloads of all the datasets, otherwise only
                    missing datasets will be downloaded.
  --help            Show this message and exit.

Finally, verify your installation:

./bin/verify

Quickstart

Before following this section, make sure you've done the Setup.

Fine-tuning

To fine-tune the model, use bin/fine-tune.py:

$ ./bin/fine-tune.py --help
Usage: fine-tune.py [OPTIONS] MIXTURE RESULTS_DIR

  Fine-tune the model on MIXTURE, writing results to RESULTS_DIR.

Options:
  --pretrained-model TEXT         The path to or name of the pretrained model.
                                  Defaults to 3B.
  --n-steps INTEGER               The number of gradient updates. Defaults to
                                  25,000.
  --learning-rate FLOAT           The learning rate to use for training.
                                  Defaults to 3e-3.
  --batch-size INTEGER            The batch size to use for training. For
                                  efficient training on the TPU, choose a
                                  multiple of either 8 or 128. Defaults to 16.
  --model-parallelism INTEGER     The degree of model parallelism to use.
                                  Defaults to 8.
  --save-checkpoints-steps INTEGER
                                  The number of steps to take before saving a
                                  checkpoint. Defaults to 5000.
  --n-checkpoints-to-keep INTEGER
                                  The number of checkpoints to keep during
                                  fine-tuning. Defaults to 4.
  --tpu-name TEXT                 The name of the TPU. Defaults to the
                                  TPU_NAME environment variable.  [required]
  --tpu-topology TEXT             The topology of the TPU. Defaults to the
                                  TPU_TOPOLOGY environment variable.
                                  [required]
  --help                          Show this message and exit.

Evaluation

To evaluate the model, use bin/evaluate.py:

$ ./bin/evaluate.py --help
Usage: evaluate.py [OPTIONS] MIXTURE RESULTS_DIR

  Evaluate the model located at RESULTS_DIR on MIXTURE.

Options:
  --batch-size INTEGER         The batch size to use for prediction. For
                               efficient prediction on the TPU, choose a
                               multiple of either 8 or 128. Defaults to 64.
  --model-parallelism INTEGER  The degree of model parallelism to use.
                               Defaults to 8.
  --tpu-name TEXT              The name of the TPU. Defaults to the TPU_NAME
                               environment variable.  [required]
  --tpu-topology TEXT          The topology of the TPU. Defaults to the
                               TPU_TOPOLOGY environment variable.  [required]
  --help                       Show this message and exit.

Tests and Code Quality

The code is formatted with black. You can run the formatter using the bin/format script:

$ ./bin/format

To run code quality checks, use the bin/verify script:

$ ./bin/verify

For fine-grained control of which tests to run, use pytest directly:

$ pytest

You can also skip slower tests by passing the --skip-slow (-s) flag:

$ pytest --skip-slow

Citation

Unicorn on Rainbow is a AAAI 2021 paper. Please check back here soon for the bibtex citation.

Contact

For public, non-sensitive questions and concerns, please file an issue on this repository.

For private or sensitive inquiries email mosaic on the allenai.org website.

Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022