Implementation of the HMAX model of vision in PyTorch

Overview

PyTorch implementation of HMAX

PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for Computational Cognitive Neuroscience:

http://maxlab.neuro.georgetown.edu/hmax.html

The S and C units of the HMAX model can almost be mapped directly onto TorchVision's Conv2d and MaxPool2d layers, where channels are used to store the filters for different orientations. However, HMAX also implements multiple scales, which doesn't map nicely onto the existing TorchVision functionality. Therefore, each scale has its own Conv2d layer, which are executed in parallel.

Here is a schematic overview of the network architecture:

layers consisting of units with increasing scale
S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1
 \ /   \ /   \ /   \ /   \ /   \ /   \ /   \ /
  C1    C1    C1    C1    C1    C1    C1    C1
   \     \     \    |     /     /     /     /
           ALL-TO-ALL CONNECTIVITY
   /     /     /    |     \     \     \     \
  S2    S2    S2    S2    S2    S2    S2    S2
   |     |     |     |     |     |     |     |
  C2    C2    C2    C2    C2    C2    C2    C2

Installation

This script depends on the NumPy, SciPy, PyTorch and TorchVision packages.

Clone the repository somewhere and run the example.py script:

git clone https://github.com/wmvanvliet/pytorch_hmax
python example.py

Usage

See the example.py script on how to run the model on 10 example images.

You might also like...
Pytorch implementation of
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

This repository contains a pytorch implementation of
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

PyTorch implementation of
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

A PyTorch Implementation of ViT (Vision Transformer)
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Pytorch implementation of the DeepDream computer vision algorithm
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Unofficial PyTorch implementation of MobileViT based on paper
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Comments
  • Provide direct (not nested) path to stimuli

    Provide direct (not nested) path to stimuli

    Hi,

    great repo and effort. I really admire your courage to write HMAX in python. I have a question about loading data in, namely about this part of the code: https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L18

    I know that by default, the ImageFolder expects to have nested folders (as stated in docs or mentioned in this issue) but it's quite clumsy in this case. Eg even if you look at your example, having subfolders for each photo just doesn't look good. Would you have a way how to go around this? Any suggestion on how to provide only a path to all images and not this nested path? I was reading some discussions but haven't figured out how to implement it.


    One more question (I didn't want to open an extra issue for that), shouldn't in https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L28 be batch_size=len(images)) instead of batch_size=10 (written symbolically)?

    Thanks.

    opened by jankaWIS 5
  • Input of non-square images fails

    Input of non-square images fails

    Hi again, I was playing a bit around and discovered that it fails for non-square dimensional images, i.e. where height != width. Maybe I was looking wrong or missed something, but I haven't found it mentioned anywhere and the docs kind of suggests that it can be any height and any width. The same goes for the description of the layers (e.g. s1). In the other issue, you mentioned that

    One thing you may want to add to this transformer pipeline is a transforms.Resize followed by a transforms.CenterCrop to ensure all images end up having the same height and width

    but didn't mention why. Why is it not possible for non-square images? Is there any workaround if one doesn't want to crop? Maybe to pad like in this post*?

    To demonstrate the issue:

    import os
    import torch
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    import pickle
    
    import hmax
    
    path_hmax = './'
    # Initialize the model with the universal patch set
    print('Constructing model')
    model = hmax.HMAX(os.path.join(path_hmax,'universal_patch_set.mat'))
    
    # A folder with example images
    example_images = datasets.ImageFolder(
        os.path.join(path_hmax,'example_images'),
        transform=transforms.Compose([
            transforms.Resize((400, 500)),
            transforms.CenterCrop((400, 500)),
            transforms.Grayscale(),
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * 255),
        ])
    )
    
    # A dataloader that will run through all example images in one batch
    dataloader = DataLoader(example_images, batch_size=10)
    
    # Determine whether there is a compatible GPU available
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # Run the model on the example images
    print('Running model on', device)
    model = model.to(device)
    for X, y in dataloader:
        s1, c1, s2, c2 = model.get_all_layers(X.to(device))
    
    print('[done]')
    

    will give an error in the forward function:

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    [<ipython-input-7-a6bab15d9571>](https://localhost:8080/#) in <module>()
         33 model = model.to(device)
         34 for X, y in dataloader:
    ---> 35     s1, c1, s2, c2 = model.get_all_layers(X.to(device))
         36 
         37 # print('Saving output of all layers to: output.pkl')
    
    4 frames
    [/gdrive/MyDrive/Colab Notebooks/data_HMAX/pytorch_hmax/hmax.py](https://localhost:8080/#) in forward(self, c1_outputs)
        285             conv_output = conv_output.view(
        286                 -1, self.num_orientations, self.num_patches, conv_output_size,
    --> 287                 conv_output_size)
        288 
        289             # Pool over orientations
    
    RuntimeError: shape '[-1, 4, 400, 126, 126]' is invalid for input of size 203616000
    

    *Code for that:

    import torchvision.transforms.functional as F
    
    class SquarePad:
        def __call__(self, image):
            max_wh = max(image.size)
            p_left, p_top = [(max_wh - s) // 2 for s in image.size]
            p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
            padding = (p_left, p_top, p_right, p_bottom)
            return F.pad(image, padding, 0, 'constant')
    
    target_image_size = (224, 224)  # as an example
    # now use it as the replacement of transforms.Pad class
    transform=transforms.Compose([
        SquarePad(),
        transforms.Resize(target_image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
    
    opened by jankaWIS 1
Releases(v0.2)
  • v0.2(Jul 7, 2022)

    For this version, I've modified the HMAX code a bit to exactly match that of the original MATLAB code of Maximilian Riesenhuber. This is a bit slower and consumes a bit more memory, as the code needs to work around some subtle differences between the MATLAB and PyTorch functions. Perhaps in the future, we could add an "optimized" model that is allowed to deviate from the reference implementation for increased efficiency, but for now I feel it is more important to follow the reference implementation to the letter.

    Major change: default C2 activation function is now 'euclidean' instead of 'gaussian'.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(Jul 7, 2022)

Owner
Marijn van Vliet
Research Software Engineer.
Marijn van Vliet
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022