Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

Related tags

Deep LearningDeepMLS
Overview

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

This repository contains the implementation of the paper:

Deep Implicit Moving Least-Squares Functions for 3D Reconstruction [arXiv]
Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu.

If you find our code or paper useful, please consider citing

@inproceedings{Liu2021MLS,
 author =  {Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu},
 title = {Deep Implicit Moving Least-Squares Functions for 3D Reconstruction},
 year = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called deep_mls using

conda env create -f environment.yml
conda activate deep_mls

Next, a few customized tensorflow modules should be installed:

O-CNN Module

O-CNN is an octree-based convolution module, please take the following steps to install:

cd Octree && git clone https://github.com/microsoft/O-CNN/
cd O-CNN/octree/external && git clone --recursive https://github.com/wang-ps/octree-ext.git
cd .. && mkdir build && cd build
cmake ..  && cmake --build . --config Release
export PATH=`pwd`:$PATH
cd ../../tensorflow/libs && python build.py --cuda /usr/local/cuda-10.0
cp libocnn.so ../../../ocnn-tf/libs

Efficient Neighbor Searching Ops

Neighbor searching is intensively used in DeepMLS. For efficiency reasons, we provide several customized neighbor searching ops:

cd points3d-tf/points3d
bash build.sh

In this step, some errors like this may occur:

tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h:22:10: fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory
 #include "third_party/gpus/cuda/include/cuda_fp16.h"

For solving this, please refer to issue.
Basically, We need to edit the codes in tensorflow framework, please modify

#include "third_party/gpus/cuda/include/cuda_fp16.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h" to

#include "cuda_fp16.h"

and

#include "third_party/gpus/cuda/include/cuComplex.h"
#include "third_party/gpus/cuda/include/cuda.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_device_functions.h" to

#include "cuComplex.h"
#include "cuda.h"

Modified Marching Cubes Module

We have modified the PyMCubes to get a more efficient marching cubes method for extract 0-isosurface defined by mls points.
To install:

git clone https://github.com/Andy97/PyMCubes
cd PyMCubes && python setup.py install

Datasets

Preprocessed ShapeNet Dataset

We have provided the processed tfrecords file. This can be used directly.

Our training data is available now! (total 130G+)
Please download all zip files for extraction.
ShapeNet_points_all_train.zip.001
ShapeNet_points_all_train.zip.002
ShapeNet_points_all_train.zip.003
After extraction, please modify the "train_data" field in experiment config json file with this tfrecords name.

Build the Dataset

If you want to build the dataset from your own data, please follow:

Step 1: Get Watertight Meshes

To acquire a watertight mesh, we first preprocess each mesh follow the preprocess steps of Occupancy Networks.

Step 2: Get the groundtruth sdf pair

From step 1, we have already gotten the watertight version of each model. Then, we utilize OpenVDB library to get the sdf values and gradients for training.
For details, please refer to here.

Usage

Inference using pre-trained model

We have provided pretrained models which can be used to inference:

#first download the pretrained models
cd Pretrained && python download_models.py
#then we can use either of the pretrained model to do the inference
cd .. && python DeepMLS_Generation.py Pretrained/Config_d7_1p_pretrained.json --test

The input for the inference is defined in here.
Your can replace it with other point cloud files in examples or your own data.

Extract Isosurface from MLS Points

After inference, now we have network predicted mls points. The next step is to extract the surface:

python mls_marching_cubes.py --i examples/d0fa70e45dee680fa45b742ddc5add59.ply.xyz --o examples/d0fa70e45dee680fa45b742ddc5add59_mc.obj --scale

Training

Our code supports single and multiple gpu training. For details, please refer to the config json file.

python DeepMLS_Generation.py examples/Config_g2_bs32_1p_d6.json

Evaluation

For evaluation of results, ConvONet has provided a great script. Please refer to here.

[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022