Perturb-and-max-product: Sampling and learning in discrete energy-based models

Overview

Perturb-and-max-product: Sampling and learning in discrete energy-based models

This repo contains code for reproducing the results in the paper Perturb-and-max-product: Sampling and learning in discrete energy-based models accepted at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Getting started

Dependencies can be installed via

pip install -r requirements.txt
python setup.py develop

By default this installs JAX for CPU. If you would like to use JAX with a GPU and specific CUDA version (highly recommended), follow the official instructions here.

Pmap

pmap is the main folder. It contains the following files:

  • mmd.py implements the maximum mean discrepancy metric.
  • small_ising_scoring.py contains useful functions for small tractable Ising models.
  • ising_modeling.py contains learning and sampling algorithms for Ising models using max-product and gibbs variants (in JAX).
  • ising_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • mplp.py implements the max-product linear programming algorithm for Ising models.
  • rbm_modeling.py contains learning and sampling algorithms for RBM models using max-product and gibbs variants (in JAX).
  • rbm_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • conv_or_modeling.py and logical_mpmp.py contain sampling algorithms for the deconvolution experiments in Section 5.6.

Experiments

The experiments folder contains the python scripts used for all the experiments the paper.

The data required for all the experiments has to be generated first via

. experiments/generate_data.sh

and will be automatically stored in a data folder

  • Experiments for Section 5.1 are in exp1_wrongmodel.py.
  • Experiments for Section 5.2 are in exp2_mplp.py.
  • Experiments for Section 5.3 are in exp3_zeros_train.py and exp3_zeros_test.py.
  • Experiments for Section 5.4 are in exp4_c2d_lattice_persistent.py, exp4_c2d_lattice_non_persistent.py, exp_erdos_persistent.py andexp_erdos_non_persistent.py.
  • Experiments for Section 5.5 are in exp5_mnist_train.py, exp5_mnist_test.py and exp5_rbm_2s.py.
  • Experiments for Section 5.6 are in exp6_convor.py.

The results will be automatically stored in a results folder

Figures

The notebook all_paper_plots.ipynb displays all the figures of the main paper. The figures are saved in a paper folder.

Owner
Vicarious
Vicarious
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
3 Apr 20, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022