Moscow DEG 2021 elections plots

Overview

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г.

Описание

Скрипты в данном репозитории позволяют собственноручно построить графики распределения голосов избирателей по времени на основе публичных данных от системы Дистанционного Электронного Голосования Москвы для выборов в Государственную Думу 2021 года. Получаемые графики не учитывают переголосования, так как на настощий момент на основе публичных данных разделить бюллетени проголосовавшие единожды и переголосовавшие невозможно. Дополнительно можно построить распределение электронной "явки" по номеру блока регистрации избирателей, где также наблюдаются аномалии.

Для кого предназначено это руководство

Для людей которые хотели бы собственноручно проанализировать публично доступные данные о дистанционном голосовании, но не обладают достаточным техническим уровнем или желанием разбираться для полностью самостоятельного разворачивания базы данных. Соответственно инструкция написана максимально подробно, насколько это возможно. Руководство разделено на установку (выполняется однажды) и собственно построение графиков.

Установка

Система

Скрипты для построения графиков не должны зависеть от ОС, но на настоящий момент протестированы только под Linux. Установочные скрипты и инструкции рассчитаны на использование дистрибутивов Debian или Ubuntu. Для работы из под Windows или macOS (а для повышения безопасности и под Linux) рекомендуется воспользоваться виртуальной машиной с Ubuntu 20.04. Подойдёт например VirtualBox с вот этим образом. Установка VirtualBox достаточно проста, при необходимости инструкцию легко найти. Для подключения образа достаточно его распаковать, выполнить "Файл"-"Импорт конфигураций" и выбрать распакованный файл ova. После завершения импорта в настройках созданной виртуалки в разделе "Сеть" рекомендуется сменить тип подключения на NAT, при наличии достаточных ресурсов рекомендуется увеличить объём оперативной памяти до 8 ГБайт, остальные параметры можно оставить по-умолчанию. Системный пароль в виртуалке по ссылке выше - "ubuntu".

Клонирование репозитория и получение SQL-дампа

Для получения файлов из данного репозитория необходимо установить git и выполнить клонирование. Для этого необходимо открыть терминал (в Ubuntu нажать Activities, набрать term и нажать Enter) и выполнить в нем:

sudo apt update && sudo apt install -y git
git clone https://github.com/50000-Quaoar/election2021_msk

Для работы также понадобится дамп базы данных голосования, скачать который можно с сайта https://observer.mos.ru . Например данные по одномандатным округам доступны на этой странице, кнопка "Скачать sql dump". Если используете виртуальную машину - скачивайте сразу из неё. Данные по партийным спискам здесь.

Update: observer.mos.ru в последнее время тормозит и дампы могут скачаться битыми. Правильные дампы для голосований в Госдуму имеют в запакованном состоянии размер больше 3 ГБайт. Точно корректность дампа можно проверить следующим образом (займет несколько минут):

gunzip -kc observer-20210927_233000.sql.gz | sha256sum

SHA256 чексумма для распакованного дампа одномандатников: af3ca1f9002a7bc92065fd696e642fca84691dff7a3d8ee5165c009513082c66, а для партийных списков: 63f0cea15928ed31b1dceaaa74d2651fd901be17624bd2435ea925037fa3abec . В теории дампы после 19.09 меняться не должны, соответственно их чексуммы тоже.

Установка зависимостей и импорт базы данных

Для установки зависимостей выполнить в терминале:

cd election2021_msk/install
./install_ubuntu.sh

Для импорта базы данных в том же терминале исполняем:

./import_db.sh /home/ubuntu/Downloads/observer-20210921_143000.sql.gz v2021_om

, где /home/ubuntu/Downloads/observer-20210921_143000.sql.gz - путь до скачанного дампа базы данных, а v2021_om - желаемое имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки импорт может занять от нескольких минут до ~2 часов. Терминал не закрываем. Если помимо одномандатников есть желание анализировать и другие голосования (партийные списки, Мосгордума), то необходимо эту операцию повторить с другим именем файла и названием базы.

Дорасшифровывание бюллетеней

В публично доступной на https://observer.mos.ru базе данных расшифровывание бюллетеней не была произведено до конца (подробности см. например в статье на Хабре на тему ДЭГ). Чтобы исправить это прискорбное недоразумение необходимо выполнить:

cd ..
./decrypt_ballots.py --dbname v2021_om

, где v2021_om - выбранное имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки расшифровывание может занять вплоть до нескольких часов. После завершения расшифровки база данных готова к использованию и можно переходить к построению графиков и анализу данных. Строить графики можно и без дорасшифровывания или не дожидаясь его завершения, но тогда часть голосов не будет учтена. Если анализируете несколько баз, то надо дорасшифровывать их все.

Построение графиков

Для построения графика распределения голосов по времени достаточно вызвать в терминале:

./time_plot.py -c plot-config.json --dbname v2021_om

, где plot-config.json - JSON файл с конфигурацией желаемого графика (по-умолчанию plot-config.json), а v2021_om - название базы данных. Полный help можно получить выполнив:

./time_plot.py -h

Для построения графика явки в зависимости от номера блока регистрации избирателей:

./turnout_plot.py --dbname v2021_om

, где v2021_om - название базы данных, других параметров не требуется.

Выбор данных для построения графика распределения по времени

Параметры графиков задаются в виде текстовых JSON-файлов. Параметр minutes_in_bin задаёт число минут на каждую точку по оси X (рекомендуемые значения от 10 до 60). Параметр minutes_per_axis_tick - частоту подписей времени по X. Параметр percentage выбирает отображать ли на графике абсолютное количество голосов (false) или процент голосов в данном временном интервале каждого отдельного кандидата от всех кандидатов на графике (true). Параметр integrate позволяет отобразить сумму (true) всех голосов за кандидата к текущему моменту.

Наконец наиболее важный параметр candidates_to_plot задаёт список (в квадратных скобках) ID кандидатов, которых необходимо отобразить на графике. ID интересующего вас кандидата можно узнать запустив time_plot.py с опцией -l номер_округа. Например:

./time_plot.py -l 198

выведет список кандидатов в 198 округе, а для получения полного списка используйте опцию -l 0.

Время построения каждого графика обычно не превышает пары минут.

Примеры JSON-файлов

В репозитории представлено несколько JSON файлов для примера графиков по одномандатным округам: 198_perc.json - процентное распределение голосов по времени за всех кандидатов по 198 округу; 198_integral.json - полное количество голосов к ка времени за всех кандидатов по 198 округу; 208_abs.json - распределение голосов по времени за всех кандидатов по 208 округу; sobyanin_list.json - распределение голосов по времени за всех "административных" кандидатов по всем округам Москвы, позволяет проследить схожесть динамики набора голосов, в частности т.н. "перерыв на обед" в воскресенье днем; obed.json - распределение голосов по времени за трех административных кандидатов по разным округам и трех их основных конкурентов, позволяет проследить отличие в динамике числа голосов за административных и опозиционных кандидатов, в особенности в воскресенье (стремительное набор голосов за административных в 6:30 утра, отсутствие "обеда" у опозиционных голосов и резкое снижение административных после 14:30); party.json - распределение голосов по времени по партийным спискам, обед у ЕР присутствует;

Примеры графиков

Графики для конфигураций описанных выше, некоторые приближены для наглядности.

198_perc.json

alt text

198_integral.json

alt text

208_abs.json

alt text

sobyanin_list.json

alt text

obed.json

alt text

party.json

alt text

198_perc.json нормированный на официальные результаты

alt text

turnout_plot.py для одномандатных округов

alt text

TODO

  • Добавить построение других типов графиков.
  • Ускорить расшифрование.
  • Замечания и вопросы приветствуются :).
A site that displays up to date COVID-19 stats, powered by fastpages.

https://covid19dashboards.com This project was built with fastpages Background This project showcases how you can use fastpages to create a static das

GitHub 1.6k Jan 07, 2023
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
2021 grafana arbitrary file read

2021_grafana_arbitrary_file_read base on pocsuite3 try 40 default plugins of grafana alertlist annolist barchart cloudwatch dashlist elasticsearch gra

ATpiu 5 Nov 09, 2022
Time series visualizer is a flexible extension that provides filling world map by country from real data.

Time-series-visualizer Time series visualizer is a flexible extension that provides filling world map by country from csv or json file. You can know d

Long Ng 3 Jul 09, 2021
Moscow DEG 2021 elections plots

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г. Описание Скрипты в данном репозитории позволяют собственноручно построить графи

9 Jul 15, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Python & Julia port of codes in excellent R books

X4DS This repo is a collection of Python & Julia port of codes in the following excellent R books: An Introduction to Statistical Learning (ISLR) Stat

Gitony 5 Jun 21, 2022
Gallery of applications built using bqplot and widget libraries like ipywidgets, ipydatagrid etc.

bqplot Gallery This is a gallery of bqplot examples. View the gallery at https://bqplot.github.io/bqplot-gallery. Contributing new examples Clone this

8 Aug 23, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022