ADCS - Automatic Defect Classification System (ADCS) for SSMC

Related tags

Text Data & NLPADCS
Overview

Table of Contents

  1. Table of Contents
  2. ADCS Overview
  3. System Design
  4. Full Program Settings
  5. Abbreviations Guide

ADCS Overview

Automatic Defect Classification System (ADCS) for FS, BS & EN Model Deployment

By: Tam Zher Min
Email: [email protected]

Summary

This is an indepently architected sequential system (similar to AXI recipes), threaded alongside a Tkinter GUI. It can automatically classify and sort wafer image scans locally for SSMC and can also train new machine learning models. Total ~2000 LOC (lines of code). Run the ADCS.vbs file to start.

Operator's Guide

Slides for operators can be found in the /ADCS/notes/guides folder or through this link. This guide is for operators looking to check the wafer lots with defects and for how to sort the wafer scans after they are classified by the ADCS.

Demo

Figma Design Mockup

ADCS Demo


System Design

System Logic

This is a full-fledged system that I planned and wrote every single line myself during my 4-month internship at SSMC (AUG 23 '21 — JAN 07 '22). This system deploys 2 CNN models locally (up to 3 needed) and performs inference on all images found from continuously polling the folder where all the wafer scans are transferred to.

The system also needs to parse through a weird file format to extract relevant information. This file is also required to be edited because SSMC's software can only understand this format. The way it is parsed is a little hacky and not 100% fool-proof but because it does not have a fixed format, there are no easy ways around it.

The Tkinter GUI was very challenging to code because UI systems are usually very finnicky. However, I managed to make it work, allowing users to change settings and logging to the GUI with a queue and using threading to run the production or training mode separate from the main Tkinter GUI thread.

All system design logic, flow, structure and considerations were by me — good in that I managed to produce something of this scale alone, bad in that I am not sure if these are the best practices or if I had missed out on any glaring problems; but I did what I could.

Training Mode

Take note, for training mode, the "Balanced no. of Samples per Class" value is important. You should derive this number by looking at the number of images you have for each class. It should be more than the number of samples in each class but lower than the most majority class.

For example, if the chipping class has only 30 images while the stain, scratch and whitedot classes have 100 images each and the AOK class has 1000 images, then you should pick between a minimum of 100 to a maximum of 1000. A good number might be 300 for this case. You can refer to the table below to get a sensing.

Hence, it heavily depends on the number of samples you have for training. As more images get sorted into the trainval folder for future retraining, this value should increase over time, otherwise you are not fully utilising the images to train the models.

eg. aok chipping scratch stain whitedot # RANGE # # INPUT #
1. 400 10 20 40 20 40-400 100
2. 1000 30 100 150 200 200-1000 300
3. 800 100 200 150 75 200-800 400

Production System Flow

  1. AXI scans wafers and generates FBE images
  2. KLA files and images fed into ADC drive's "new" directory (dir)
  3. ADCS continuously polls "new" dir for KLA files
  4. If KLA files found, start model inference; else, poll again after some wait time
  5. Model Inference
    1. Reads oldest KLA file and stores relevant information into "wafer" data structures
    2. Checks if filenames referenced in KLA file can be found in the "new" dir
    3. If all found or after timeout, feed FS/BS/EN images into their respective models
    4. FBE models classify images and modify the KLA file's CLASSNUMBERs to the predictions
    5. Results will also be saved to CSV (Excel) files for future reference
    6. Move KLA file and images to ADC drive's "old" directory and also copy them to K drive
    7. Predicted files in "unsorted" folder require manual sorting for future retraining
  6. Repeat

Folder Structure (Critical Files Only)

Do follow this folder structure to ensure reproducibility

[K drive]                   // modified KLA file and images copied here after inference
[ADC drive]                 // houses all wafer data and ADCS application code
│
├── /data                   // stores all KLA files and images from AXI
│   ├── /new                // unpredicted lots
│   └── /old                // predicted lots for backup and retraining
│       ├── /backside       // test/trainval/unsorted folders will have folders for all 5 classes
│       │    ├── /test      // manually sorted images for model testing to simulate new images
│       │    ├── /trainval  // manually sorted images for model training and validation
│       │    └── /unsorted  // predicted images to be sorted into /trainval for future retraining
│       │        ├── /aok
│       │        ├── /chipping
│       │        ├── /scratch
│       │        ├── /stain
│       │        └── /whitedot
│       ├── /edgenormal     // test/trainval/unsorted folders will have folders for all 2 classes
│       │    ├── /test
│       │    ├── /trainval
│       │    └── /unsorted
│       │        ├── /aok
│       │        └── /chipping
│       ├── /frontside      // any frontside scans found will be backed up here
│       └── /unclassified   // all ignored defect codes, eg. edgetop (176) and wafer maps (172)
│
└── /ADCS                   // the Automatic Defect Classification System
    ├── /assets             // miscellaneous files
    │   ├── icon.ico        // wafer icon found online
    │   ├── requirements.txt// necessary python libraries and versions
    │   └── run.bat         // batch file that runs main.py using specified python.exe file
    ├── /models             // trained FBE .h5 tensorflow models
    │   ├── /backside
    │   ├── /edgenormal
    │   └── /frontside
    ├── /results            // FBE predictions in CSV for production and training modes
    │   ├── /production
    │   │   ├── /backside
    │   │   ├── /edgenormal
    │   │   └── /frontside
    │   └── /training
    │       ├── /backside
    │       ├── /edgenormal
    │       └── /frontside
    ├── /src                // helper modules for ADCS in OOP style
    │   ├── adcs_modes.py   // script file with the 2 modes chosen in the GUI
    │   ├── be_trainer.py   // model training code for backside and edgenormal models
    │   ├── kla_reader.py   // code to parse and edit KLA files
    │   └── predictor.py    // model prediction code generic for FBE models
    │
    ├── *ADCS.vbs           // starts the ADCS app
    ├── debug.log           // log file of the latest run of main.py for debugging
    ├── main.py             // python script of the ADCS GUI to START/STOP
    ├── README.md           // this user guide text file you're reading; open in notepad
    └── settings.yaml       // config file for users to easily change settings and modes

Full Program Settings

Below are the descriptions for all of the settings found in the settings.yaml file. They allow users to change advanced settings for the code outside of the GUI such as the delay times and whether to turn off predictions for front/back/edge, etc.

The descriptions below help users understand what each setting does in a readable manner because the actual settings.yaml file is automatically generated in alphabetical order.

Note, there is technically no need to change anything in the settings.yaml file. Also note that all settings are case-sensitive. You can read more about the YAML syntax here.

Understanding the Descriptions

setting_name: [option A / option B] (default=x)
    # description

The setting's name will be before the colon followed by the available options in square brackets and the recommended default values in round brackets. The next indented line will be a short description of the setting. However, in the actual settings.yaml file, you would just write:

setting_name: setting_value

All Available Settings

ADCS Mode

adcs_mode: [PRODUCTION / TRAINING] (default=PRODUCTION)
    # either production (classification) or training mode

Folder Locations

adc_drive_new:
    # folder where all new AXI scans are transferred to
adc_drive_old:
    # folder where all old predicted wafer lots and images are stored for backup
k_drive:
    # folder where Klarity Defect finds all KLA files and wafer scans

Pause Times

pause_if_no_kla: (default=30)
    # long pause time in seconds in between checking cycles if no KLA files found
pause_if_kla: (default=5)
    # short pause time in seconds in between checking cycles if there are KLA files

times_to_find_imgs: (default=3)
    # no. of times to try and find images referenced in KLA file
pause_to_find_imgs: (default=10)
    # pause time in seconds to try and find the images referenced in KLA file

Model Configs

BATCH_SIZE: (default=8)
    # no. of images to classify at a time, higher requires more RAM
CONF_THRESHOLD: [0 - 100] (default=95)
    # min. % confidence threshold to clear to be considered confident

BS Predictor Configs

BS Original Code: [174] AVI_Backside Defect

bs_model:
    # specific model to use, leave empty to use latest model
bs_defect_mapping: # correct KLA defect codes for BS defects
    aok: 0         # Unclassified
    chipping: 188  # OQA_Edge Chipping (BS)
    scratch: 190   # OQA_BS-Scratch (Cat Claw)
    stain: 195     # OQA_BS-Stain
    whitedot: 196  # OQA_BS-White Dot

EN Predictor Configs

EN Original Code: [173] AVI_Bevel Defect

en_model:
    # specific model to use, leave empty to use latest model
en_defect_mapping: # correct KLA defect codes for EN defects
    aok: 0         # Unclassified
    chipping: 189  # OQA_Edge Chipping (FS)

FS Predictor Configs

FS Original Code: [056] AVI Def

unimplemented

BE Trainer Configs

Basic Trainer Configs

training_runs: (default=5)
    # no. of models to train
training_subdir: [BACKSIDE / EDGENORMAL]
    # to train either backside or edgenormal models
training_n: (default=300)
    # balanced number of samples per class
training_saving_threshold: [0 - 100] (default=95)
    # min. % test accuracy to clear before the trained model is saved

Advanced Hyperparameter Configs

dense_layers: (default=1)
    # no. of dense layers after the layers of the pretrained model
dense_layer_size: (default=16)
    # size of each dense layer, bigger size results in a bigger .h5 model
dropout: (default=0.2)
    # % of weights to drop randomly to mitigate overfitting
patience: (default=10)
    # no. of epochs to wait before early stopping and take best model

Custom Testing Mode

training_mode: [true / false] (default=true)
    # false if you want to test a specific model
test_model: (default=empty)
    # test this model name if training_mode is false

Abbreviations Guide

  • SSMC: Systems on Silicon Manufacturing Company (TSMC & NXP JV)
  • Defect Classes (the other classes are self-explanatory)
    • aok: ALL-OK, meaning a normal image with no defect (false positive)
  • Domain
    • FS: Frontside
    • BE: Back & Edge (Backside + Edgenormal)
    • BS: Backside
    • EN: Edge Normal
    • ET: Edge Top (ignored)
    • FBE: Frontside-Backside-EdgeNormal
    • AXI: Advanced 3D X-Ray Inspection
    • KLA: File format used by SSMC's infrastructure
  • System
    • CNN: Convolutional Neural Network, the machine learning model used
    • CLI: Command Line Interface
    • GUI: Graphical User Interface
    • df: Dataframe, think of it as Excel but in code
Owner
Tam Zher Min
Penultimate NUS Electrical Engineering Undergraduate
Tam Zher Min
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022